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Small-angle scattering of X-rays and neutrons is a routine method for the

determination of nanoparticle sizes. The so-called Guinier law represents the

low-q approximation for the small-angle scattering curve from an assembly of

particles. The Guinier law has originally been derived for nonmagnetic particle-

matrix-type systems and it is successfully employed for the estimation of particle

sizes in various scientific domains (e.g. soft-matter physics, biology, colloidal

chemistry, materials science). An important prerequisite for it to apply is the

presence of a discontinuous interface separating particles and matrix. Here, the

Guinier law is introduced for the case of magnetic small-angle neutron

scattering and its applicability is experimentally demonstrated for the example

of nanocrystalline cobalt. It is well known that the magnetic microstructure of

nanocrystalline ferromagnets is highly nonuniform on the nanometre length

scale and characterized by a spectrum of continuously varying long-wavelength

magnetization fluctuations, i.e. these systems do not manifest sharp interfaces in

their magnetization profile. The magnetic Guinier radius depends on the applied

magnetic field, on the magnetic interactions (exchange, magnetostatics) and on

the magnetic anisotropy-field radius, which characterizes the size over which the

magnetic anisotropy field is coherently aligned into the same direction. In

contrast to the nonmagnetic conventional Guinier law, the magnetic version can

be applied to fully dense random-anisotropy-type ferromagnets.

1. Introduction

The determination of particle sizes is one of the most impor-

tant daily tasks in many branches of the natural sciences.

While particle sizes in the micrometre regime and above can

be conveniently determined using e.g. optical microscopy, the

size of nanoparticles (with D’ 1� 100 nm) requires scanning

and/or transmission electron microscopy, or other scattering

methods such as X-ray or neutron scattering. While the former

techniques inherently suffer from low statistics, the latter

techniques have the advantage of providing statistically

averaged information over a large number of particles. Small-

angle scattering, using either X-rays or neutrons, is one of the

most popular methods for analyzing structures on the meso-

scopic length scale, embracing a broad range of research topics

from condensed-matter and soft-matter physics, to physical

chemistry, biology, and materials science (Svergun et al., 2013).

The well known Guinier law describes the elastic small-

angle scattering of X-rays and neutrons near the origin of

reciprocal space (Guinier & Fournet, 1955). When the scat-

tering is from a dilute and monodisperse set of objects

(particles) with sharp interfaces, then the macroscopic differ-

ential scattering cross-section d�/d� in the limit of low-
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momentum transfers q < 1.3/RG can be expressed as (Porod,

1982; Feigin & Svergun, 1987)

d�

d�
ðqÞ ffi

d�

d�
ðq ¼ 0Þ exp �

q2R2
G

3

� �
; ð1Þ

where the forward scattering cross-section (d�/d�)(0) is

proportional to the squared total excess scattering length of

the particle and RG denotes the particle’s radius of gyration.

Equation (1) is valid for arbitrary particle shapes. From a

Guinier plot, ln(d�/d�) versus q2, one can determine RG,

which is related to the particle size, e.g. RG
2 = (3/5)R2 for a

sphere of radius R. The Guinier law is of outstanding impor-

tance for the analysis of small-angle scattering data, particu-

larly at the first stage of the data analysis.

From the foregoing discussion it is clear that the Guinier

law has been derived for nonmagnetic particle-matrix-type

assemblies in the context of the early theoretical develop-

ments of the technique of small-angle X-ray scattering

(SAXS) (Guinier & Fournet, 1955). Therefore, its application

to magnetic materials, which is the subject of the present

article, should be considered with special care; for instance,

the Guinier law is certainly applicable to systems consisting of

saturated and homogeneous magnetic particles in a nonmag-

netic and homogeneous matrix or, likewise, to pores in a

saturated matrix. In this context, we refer to the article by

Burke (1981) who investigated the influence of magnetic

shape anisotropy on the Guinier law of fine ferromagnetic

single-domain particles. By contrast, when the sample is

inhomogeneously magnetized on the nanometre length scale,

i.e. when the magnitude and orientation of the magnetization

vector field M varies continuously with the position r inside

the material, then a central assumption underlying the Guinier

law – namely that of domains (particles) separated by

discontinuous interfaces from the matrix – is violated.

Equation (1), with a constant and field-independent RG, does

not then describe the low-q region of the magnetic small-angle

neutron scattering (SANS) cross-section. Intuitively, it may be

clear from the previous considerations that an effective

magnetic Guinier radius is expected to depend on the applied

magnetic field as well as on the magnetic interactions (e.g.

exchange, anisotropy, magnetostatics). In the following we

derive the magnetic Guinier law and provide an analysis of

experimental SANS data of nanocrystalline Co.

This article is organized as follows: Section 2 furnishes the

details of the SANS experiment; Sections 3 and 4 introduce

the unpolarized SANS cross-section, the theoretical back-

ground in terms of micromagnetic theory, and the magnetic

Guinier law; Section 5 presents and discusses the experimental

results of the magnetic Guinier analysis on nanocrystalline Co;

and Section 6 summarizes the main results of this study. In the

Supporting information for this article, the two- and one-

dimensional total SANS cross-sections and a graphical

representation of the relative error of the magnetic Guinier

approximation are featured.

2. Experimental

The SANS experiment was conducted at 300 K using the

instrument D11 at the Institut Laue-Langevin, Grenoble. We

used unpolarized incident neutrons with a mean wavelength of

� = 6 Å and a bandwidth of ��/� = 10% (FWHM). The

instrument offers access to a low q range of 0.016 nm�1<
� q<�

0.2 nm�1 with the two-dimensional position-sensitive detector

placed at a distance of 38.5 m from the sample position. The

external magnetic field H0 (with �0H0
max = 16.5 T where �0 is

the permeability of free space and H0
max is the maximum

external magnetic field component) was applied parallel to the

wavevector k0 of the incoming neutron beam (see Fig. 1 for a

sketch of the neutron setup).

The nanocrystalline Co sample under study was synthesized

by means of pulsed electrodeposition. We emphasize that this

particular sample has been extensively studied in the past

using magnetometry, wide-angle X-ray diffraction, and

unpolarized and spin-polarized SANS (e.g. Michels et al., 2000,

2003, 2014; Weissmüller et al., 2001; Honecker et al., 2011;

Mettus & Michels, 2015). It is also important to note that it is a

fully dense polycrystalline bulk metal with a nanometre grain

size [average crystallite size: D = 9.5 � 3.0 nm (Weissmüller et

al., 2001)], not nanoparticles in a matrix. The SANS sample

consisted of a single circular disk. Based on the thickness

(80 mm) and the diameter (2 cm) of the disk, we computed a

demagnetizing factor of N ffi 0.994 for the case that H0 is

parallel to the surface normal of the sample (Osborn, 1945), in

agreement with the k0 k H0 scattering geometry of the SANS

experiment. Using the value of the saturation magnetization

of Co, �0Ms = 1.80 T (¼̂¼1434 kA m�1), this results in a

demagnetizing field of �0NMs ffi 1.789 T for a fully saturated

sample. In the following all the reported field values are

corrected for demagnetizing effects. To reduce the influence of

inhomogeneous demagnetizing fields at the outer perimeter of

the circular sample, the neutron beam was collimated to a

diameter of 0.8 cm. The neutron transmission was larger than

90% in all measurements, indicating a negligible influence of

multiple scattering.

3. SANS cross-section and micromagnetic theory

When the external magnetic field H0 k ez (applied field

direction H0 defines the ez direction of a cartesian coordinate
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Figure 1
Sketch of the neutron setup. The external magnetic field H0 k ez is applied
parallel to the wavevector k0 of the incident neutrons. In the small-angle
approximation, the momentum-transfer or scattering vector, q = k1 � k0,
varies in the plane perpendicular to k0, i.e. q ffi {qx, qy, 0} = q {cos �,
sin �, 0}. The magnitude of q for elastic scattering is given by q = (4�/�)
sin ( /2), where � denotes the mean neutron wavelength (selected by the
velocity selector) and  is the scattering angle. The angle � specifies the
orientation of q on the two-dimensional detector.



system) is applied parallel to the wavevector k0 of the

incoming neutron beam (Fig. 1), the unpolarized elastic

differential SANS cross-section d�/d� at momentum-transfer

vector q equals that given in Mühlbauer et al. (2019).

d�

d�
ðqÞ ¼

8�3

V
b2

H

"��eNN��2
b2

H

þ
��eMMx

��2 sin2 � þ
��eMMy

��2 cos2 �þ
��eMMz

��2
� ðeMMx

eMM�y þ eMM�xeMMyÞ sin � cos �

#
;

ð2Þ

where V is the scattering volume and the constant bH =

2.91 � 108 A�1m�1 relates the atomic magnetic moment �a to

the atomic magnetic scattering length bm ffi bH�a (in small-

angle approximation). eNNðqÞ and eMMðqÞ ¼ feMMxðqÞ; eMMyðqÞ;eMMzðqÞg represent, respectively, the Fourier transforms of the

nuclear scattering-length density N(r) and the magnetization

M(r) = {Mx(r), My(r), Mz(r)}, the superscript ‘*’ refers to the

complex-conjugated quantity, and � denotes the angle

between q and ex. Note that in the small-angle approximation

the component of q along the incident beam (k0 k ez) is

negligible compared with the other two components, such that

q ffi {qx, qy, 0}. This emphasizes the fact that SANS predomi-

nantly probes correlations in the plane perpendicular to k0.

Further analysis of the magnetic SANS cross-section

[equation (2)] requires expressions for the magnetization

Fourier amplitudes eMMx;y;z. In the works by Honecker &

Michels (2013) and Michels et al. (2016) a quite general theory

of magnetic SANS based on the continuum theory of micro-

magnetics has been developed. In the following we sketch the

main ideas of the micromagnetic SANS theory in order to

achieve a self-contained presentation. The approach considers

two origins of spin misalignment. (i) Spatial nanometre-scale

variations in the orientation and/or magnitude of the magnetic

anisotropy field Hp(r) (e.g. at a grain boundary in a single-

phase nanocrystalline ferromagnet). Such anisotropy-field

fluctuations give rise to torques on the magnetization M and

result in a concomitant deviation of M from the mean

magnetization direction (given by a large applied field).

(ii) Spatial variations of the saturation magnetization Ms(r)

give rise to local magnetostatic stray fields (e.g. at a particle-

matrix interphase in a nanocomposite), which also result in a

magnetic SANS contrast. This scenario is adapted to the

inhomogeneous magnetic microstructure which is found in

many polycrystalline magnets.

The micromagnetic theory takes into account the isotropic

and symmetric exchange interaction, magnetic anisotropy, as

well as the Zeeman and magnetodipolar interaction energies.

As detailed in the pertinent textbooks (Brown, 1963;

Aharoni, 1996; Kronmüller & Fähnle, 2003; Kronmüller &

Parkin, 2007), variational calculus leads to a set of nonlinear

partial differential equations for the equilibrium magnetiza-

tion configuration M(r). For the static case, the equations of

micromagnetics (so-called Brown’s equations) can be conve-

niently expressed as a balance-of-torques equation,

MðrÞ �HeffðrÞ ¼ 0: ð3Þ

Equation (3) expresses the fact that at static equilibrium the

torque on the magnetization M(r) caused by an effective

magnetic field Heff(r) vanishes at each point r inside the

material. The effective field is obtained as

HeffðrÞ ¼ HexðrÞ þHpðrÞ þH0 þHdðrÞ; ð4Þ

where Hex(r) = lM
2 �M(r) represents the exchange field (with �

the Laplace operator), Hp(r) is the magnetic anisotropy field,

H0 is a uniform applied magnetic field, and Hd(r) denotes the

magnetostatic or magnetodipolar interaction field. The

magnetostatic exchange length lM = [2A/(�0Ms
2)]1/2 is of the

order of a few nanometres for many magnetic materials [lM ’

3–10 nm (Kronmüller & Fähnle, 2003)], A is the exchange-

stiffness constant and Ms is the saturation magnetization.

Then, in the approach-to-saturation regime, the micro-

magnetic equations can be linearized, and closed-form

expressions for the magnetization Fourier components eMMxðqÞ

and eMMyðqÞ can be obtained [see Honecker & Michels (2013)

and Michels et al. (2016) for details].

Using the results for eMMx and eMMy, the unpolarized elastic

SANS cross-section d�/d� in the parallel scattering geometry

[equation (2)] can be expressed in compact form as

d�

d�
ðq;HiÞ ¼

d�res

d�
ðqÞ þ SHðqÞRHðq;HiÞ; ð5Þ

where the (nuclear and magnetic) so-called residual SANS

cross-section,

d�res

d�
¼

8�3

V

��eNN��2 þ b2
H

��eMMs

��2� �
; ð6Þ

is measured at complete magnetic saturation (jeMMzj
2
¼ jeMMsj

2),

and the remaining spin-misalignment SANS cross-section

d�SM

d�
¼

8�3

V
b2

H

���eMMx

��2 sin2 � þ
��eMMy

��2 cos2 �

�
�eMMx

eMM�y þ eMM�xeMMy

	
sin � cos �



¼ SHðqÞRHðq;HiÞ;

ð7Þ

describes the purely magnetic small-angle scattering caused by

the misaligned spins with related Fourier amplitudes eMMxðqÞ

and eMMyðqÞ [compare with equation (2)]. Since the magnetic

Guinier law is related to the spin-misalignment scattering, it is

necessary to separate the total d�/d� into d�res/d� and

d�SM/d� [equation (5)]. In the analysis of experimental data,

d�res/d� can be measured at a saturating applied field and

subtracted from the d�/d� at lower fields to obtain the field-

dependent d�SM/d�.

The quantity SH denotes the anisotropy-field scattering

function, which is proportional to the magnitude square of the

Fourier transform eHHpðqÞ of the magnetic anisotropy field

Hp(r), i.e. SH /
eHH2

pðqÞ. This function contains information on

the strength and spatial structure of the magnetic anisotropy

field. In the approach-to-saturation regime, which is the

validity range of the micromagnetic SANS theory, SH is

independent of the applied magnetic field. We further note
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that for a statistically isotropic material SH depends only on

the magnitude q of the scattering vector q, not on its orien-

tation (see below). The dimensionless micromagnetic

response function RH depends on q as well as on the internal

magnetic field Hi = H0 � NMs, where N denotes the demag-

netizing factor. More specifically (k0 k H0),

RHðq;HiÞ ¼
p2ðq;HiÞ

2
; ð8Þ

where the dimensionless function,

pðq;HiÞ ¼
Ms

Heffðq;HiÞ
¼

Ms

Hið1þ l2
Hq2Þ

; ð9Þ

depends on the effective magnetic field Heff(q, Hi) [not to be

confused with Heff(r) in equation (3)] and on the micro-

magnetic exchange length,

lHðHiÞ ¼
2A

�0MsHi

� �1=2

: ð10Þ

The quantity lH characterizes the field-dependent size of

perturbed regions around microstructural defects, and, as we

will see below, it is this quantity which renders the magnetic

Guinier radius field dependent. By inserting typical values for

the material parameters of Co [A = 2.8 � 10�11 J m�1 and

�0Ms = 1.80 T (Michels & Weissmüller, 2008)], it is seen that

the exchange length lH varies between about 200–2 nm when

the internal field is changed between 0.001–10 T. This length

scale falls well into the resolution regime of the SANS tech-

nique.

4. Magnetic Guinier law

In order to derive a Guinier expression for magnetic SANS,

analogous to equation (1), we look in the following for the

low-q behavior of the spin-misalignment SANS cross-section

d�SM/d� = SH(q)RH(q, Hi) [equation (7)]. The sample volume

which is probed by the neutrons typically contains many

defects (e.g. crystallites separated by grain boundaries), each

one having a different orientation and/or magnitude of the

magnetic anisotropy field. To obtain a low-q approximation

for SH /
eHH2

pðqÞ, we make the assumption that the total

magnetic anisotropy field of the sample, Hp(r), is the sum of

the anisotropy fields of the individual defects i (Weissmüller et

al., 2001, 1999) i.e.

HpðrÞ ¼
XN

i¼1

Hp;iðrÞ: ð11Þ

This decomposition also applies to the Fourier transformeHHpðqÞ of Hp(r), i.e.

eHHpðqÞ ¼
XN

i¼1

eHHp;iðqÞ; ð12Þ

so that

eHH2

p ¼
XN

i¼1

eHH2

p;i þ
XN

i6¼j

eHHp;i 	
eHHp;j; ð13Þ

where we have assumed that the eHHp;i are real-valued quan-

tities. If the eHHp;i of the individual defects are statistically

uncorrelated (random anisotropy), then terms eHHp;i 	
eHHp;j with i

6¼ j take on both signs with equal probability. Consequently,

the sum over these terms vanishes and

eHH2

pðqÞ ¼
XN

i¼1

eHH2

p;iðqÞ: ð14Þ

Equation (14) suggests that eHH2

p, and hence SH /
eHH2

p, can be

computed for an arbitrary arrangement of defects once the

solution for the single-defect case eHHp;iðqÞ is known. This can,

for example, be accomplished for an idealized nanocrystalline

ferromagnet, where the crystallites (acting as magnetic

defects) have random crystallographic orientation and where

the anisotropy field arises exclusively from the magnetocrys-

talline anisotropy. Because each grain is a single crystal, the

anisotropy field in the grain is a constant vector, i.e. Hp, i 6¼

Hp, i(r), and the anisotropy field Fourier amplitude is obtained

by the following form-factor integral (Weissmüller et al., 2001):

eHHp;iðqÞ ¼
Hp;i

ð2�Þ3=2

Z
Vp;i

expð�iq 	 rÞ d3r; ð15Þ

where the integral extends over the volume of grain i. For the

example of a spherical grain shape [Vp, i = (4�/3)Ri
3], we obtain

the well known result that

eHHp;iðqÞ ¼ eHHp;iðqRiÞ ¼
Hp;i

ð2�Þ3=2
3Vp;i

j1ðqRiÞ

qRi

; ð16Þ

where j1(z) denotes the spherical Bessel function of the first

order.

The square of equation (16) is identical, except for the

prefactor, to the nuclear SANS cross-section of an array of

noninterfering spherical particles, and general asymptotic

results at small and large q are therefore immediately trans-

ferable; in particular, the Guinier approximation relates

SHðqÞ / eHH2
pðqÞ at small-scattering vectors to the radius of

gyration RGH of the magnetic anisotropy field, according to

Weissmüller et al. (2001),

SHðqÞ ffi SHð0Þ exp

�
�

q2R2
GH

3

�
: ð17Þ

Similar to nuclear SANS and SAXS, where RG is a measure

for the particle size, RGH deduced from SH may be seen as a

measure for the size of regions over which the magnetic

anisotropy field Hp(r) is homogeneous. For the special case of

an idealized nanocrystalline ferromagnet (random anisotropy

and magnetocrystalline anisotropy only), RGH is closely

related to the crystallite size.

Equation (17) can be combined with the corresponding

small-q result for the response function [equation (18)]. Taylor

expansion of RH around q = 0 yields:
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RHðq;HiÞ ¼
p2ðq;HiÞ

2
ffi

p2
0

2
1� 2l2

Hq2
� 	

ffi
p2

0

2
exp

�
�

q26l2
H

3

�
;

ð18Þ

where p0 = p(q = 0) = Ms/Hi [compare with equation (9)].

Inserting equations (17) and (18) into d�SM/d� = SHRH, we

have

d�SM

d�
ffi

d�SM

d�
ðq ¼ 0Þ exp

�
�

q2R2
GSM

3

�
; ð19Þ

where

R2
GSMðHiÞ ¼ R2

GH þ 6l2
HðHiÞ ¼ R2

GH þ
12A

�0MsHi

; ð20Þ

represents the magnetic field-dependent Guinier radius. This

relation provides a means to determine the exchange constant

A from field-dependent SANS measurements. Note that

d�SM=d� ð0Þ / p2
0 / H�2

i [compare with equation (9)]. The

observation that RGSM depends on RGH and on the micro-

magnetic exchange length lH is a manifestation of the fact that

the magnetic microstructure in real space (for which RGSM is

representative) corresponds to the convolution of the nuclear

grain microstructure (RGH) with field-dependent micro-

magnetic response functions (lH).

Up to now we have only discussed the magnetic Guinier

approximation for the parallel scattering geometry (k0 k H0),

where 2�-averaged magnetic SANS data can be used for the

analysis in terms of equation (19). In the perpendicular

geometry (k0 ? H0) an additional scattering term SMRM,

related to magnetostatic fluctuations, appears in d�SM/d�,

which complicates the discussion. Two comments are then in

place. (i) Since SM /
eMM2

zðqÞ, the SMRM contribution to d�SM/

d� can be neglected for single-phase ferromagnets, where

fluctuations in the saturation magnetization, Ms, are weak.

(ii) Inspection of the expression for the magnetostatic

response function RM in the perpendicular geometry [equa-

tion (29) in Honecker & Michels (2013)] shows that this

function vanishes by taking an average of the two-dimensional

d�SM/d� along � = 0
 (or � = 180
), while the corresponding

RH(� = 0
) = p2 [equation (28) in Honecker & Michels (2013)]

is almost equal (besides a factor of 1/2) to RH(� = 0
) = p2/2 in

the parallel geometry. In other words, these considerations

imply that the magnetic Guinier law equation [equation (19)]

can also be employed to analyze (� = 0
) sector-averaged data

in the k0 ? H0 geometry.

5. Experimental results and discussion

As expected, the two-dimensional SANS intensity distribu-

tions of the nanocrystalline Co sample are isotropic (� inde-

pendent) at all fields investigated. Although the individual

scattering contributions to equation (2) are highly anisotropic,

which is owing to the trigonometric functions and the

magnetization Fourier components eMMx;y;zðqÞ, which them-

selves may depend on the angle � via the magnetodipolar

interaction [compare with Fig. 5 in Michels (2014)], their sum

results in an isotropic (� independent) d�/d� for a statistically

isotropic grain microstructure (see the Supporting informa-

tion). This supports the assumption made in the micro-

magnetic theory of a statistically isotropic grain

microstructure. By contrast, for the perpendicular scattering

geometry (k0 ? H0), the magnetic SANS cross-section of

untextured samples exhibits a variety of angular anisotropies

(e.g. Löffler et al., 2005; Bischof et al., 2007; Michels et al.,

2003). The two-dimensional nuclear and magnetic SANS data

were azimuthally averaged over an angle of 2�. To apply

equations (19) and (20) to experimental d�SM/d� data

[compare with equation (7)], the scattering close to saturation

(here at 14.71 T internal field), corresponding to the residual

SANS cross-section d�res/d� [equation (6)], needs to be

subtracted from the total d�/d� at lower fields [equation (5)].

The subtraction procedure along with the room-temperature

magnetization curve are depicted in Fig. 2. Besides eliminating

the nuclear and the longitudinal magnetic scattering, the

subtraction also removes any background scattering contri-

bution.

By inspection of Fig. 2(c), we see that the magnetization

state of the specimen used in the SANS experiment (indicated

by the large red data points) falls well into the approach-to-

saturation regime, which is reached for �0Hi>� 0.27 T(M/Ms>�
96%, see the discussion below). The shape of d�SM/d� is

substantially different to that of d�/d�, which is owing to the

subtraction of the nuclear and saturation scattering [see also

the discussion in the work by Bick et al. (2013)]. When the

internal field is decreased from 0.671 to 0.213 T, d�SM/d�
increases strongly by a factor of �6–7 at the smallest

momentum transfers (q). The strong field dependence of

d�SM/d� supports the notion that scattering caused by

transversal spin misalignment represents by far the dominant

contribution to d�/d� (see also Fig. 3 in the work by Michels,

2014). The experimental neutron data in Fig. 2(b) cannot be

reproduced by decomposing the cross-section into a set of

noninterfering single-domain particles. Careful scrutiny of

Fig. 2(b) reveals that the point with the largest curvature in

d�SM/d� evolves to larger q values with increasing Hi, in

agreement with the concomitant decrease of the exchange

length lH in equation (20).

Fig. 3 features the magnetic Guinier analysis on nanocrys-

talline Co. Fig. 3(a) shows the Guinier plots, i.e. ln(d�SM/d�)

versus q2, along with the weighted linear least-squares fits to

equation (19), whereas Fig. 3(b) displays the obtained R2
GSM as

a function of Hi
�1 together with a weighted linear least-squares

fit to equation (20). In Fig. 3(c), the field dependence of d�SM/

d� (q = 0) is displayed. The Guinier plots in Fig. 3(a) reveal

that straight-line fits may not be appropriate for the data at the

two smallest internal fields of 0.213 and 0.252 T, where an

upward curvature becomes visible at the smallest q, in contrast

to the data at higher field. In line with this observation we see

that the dataset in Fig. 3(c) starts to deviate from the expected

linear behavior for these two smallest internal fields (open

symbols). This discrepancy can be explained with the growing

deviations from the small-misalignment approximation for

decreasing fields and can be taken as a criterion for the

validity range of the approach. Therefore, the two data points
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at 0.213 and 0.252 Twere not taken into account in the Guinier

analysis, which yields RGH = 20.5 � 1.2 nm and A =

(1.5 � 0.2) � 10�11 J m�1 [Fig. 3(b)]. The A value perfectly fits

within the range of values reported in the literature (Kron-

müller & Fähnle, 2003; Skomski, 2008), while the RGH value

corresponds to a spherical particle radius of R ffi 26.5 nm,

assuming the relation R2
GH = (3/5) R2, which is valid for

monodisperse particles. This value is larger than the average

crystallite size of 10 nm (determined by X-ray diffraction), an

observation, which can be naturally explained by the presence

of a particle-size distribution in our Co sample. It is well

known from nuclear SANS theory that a size distribution

strongly weighs the RG value towards the largest features in

the distribution; for instance, for spherical particles and point

collimation, RG
2 is then related to the ratio of the eighth over

the sixth moment of the size distribution (Feigin & Svergun,

1987; Kostorz, 1982). Therefore, for the determination of the

scaling relation between RGH and the average crystallite size,

knowledge on the particle-size distribution is required. Lastly,

as can be seen in Fig. 3(c), the extrapolated forward-scattering

cross-section d�SM/d� (q = 0) also obeys the theory predic-

tion and follows the d�SM/d� (q = 0) / Hi
�2 scaling [compare

with equation (18)].

The present theory describes the magnetic SANS cross-

section of polycrystalline bulk ferromagnets near magnetic

saturation, and their low-q behavior (magnetic Guinier law). It

assumes that the perturbing magnetic anisotropy fields of the

individual microstructural defects, which cause a perpendi-

cular magnetization component and hence a contrast for

magnetic SANS, vary randomly from defect site to defect site.

For the particular case of a nanocrystalline bulk ferromagnet

composed of single-crystal grains and atomically-sharp grain

boundaries (magnetocrystalline anisotropy only), the char-

acteristic correlation length of the anisotropy-field variation is
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Figure 3
Magnetic Guinier analysis on nanocrystalline Co. (a) Guinier plot ln(d�SM/d�) versus q2 and fits (solid lines) to equation (19) at selected values of the
internal magnetic field (see inset). (b) Plot of RGSM

2 versus Hi
�1 and fit (solid line) to equation (20). In the fitting routine, RGH and A were treated as

adjustable parameters. (c) Field dependence of (d�SM/d�) (q = 0). The solid line represents d�SM/d� (q = 0) / Hi
�2. In (b) and (c), the last two data

points (open symbols), corresponding to internal fields of 0.213 and 0.252 T, have been excluded from the fit analysis.

Figure 2
(a) 2�-azimuthally-averaged total nuclear and magnetic SANS cross-section d�/d� of nanocrystalline Co versus momentum transfer q at a series of
internal magnetic fields (see inset) (log–log scale) (k0 kH0). (b) Corresponding spin-misalignment SANS cross-section d�SM/d� obtained by subtracting
the d�/d� data at 14.71 T [orange data points in (a)] from the d�/d� at lower fields. (c) Magnetization curve of nanocrystalline Co (only the upper-right
quadrant is shown). The large red data points indicate the internal-field values where the SANS data were taken. The horizontal dashed line indicates the
saturation-magnetization value of �0Ms = 1.80 T. The vertical dashed line indicates the approach-to-saturation regime (M/Ms >� 96%).



related to the average crystallite size. Other potential sources

of spin inhomogeneity, such as surface (grain-boundary)

anisotropy or magnetoelastic anisotropy caused by long-

ranged stress fields, are not explicitly included in our theory.

Likewise, this approach is not expected to describe the

magnetic SANS of inhomogeneously magnetized nano-

particles, which are embedded in a nonmagnetic matrix. For

such a microstructure, boundary conditions for the magneti-

zation at the particle–matrix interface must be included in the

micromagnetic description of SANS, for which there is

currently no analytical solution. This poses a challenge for

future studies.

6. Conclusions

Based on the continuum theory of micromagnetics, we have

introduced the magnetic Guinier law for random-anisotropy-

type ferromagnets [equations (19) and (20)] and we have

confirmed the validity of the approach by analyzing experi-

mental data on nanocrystalline cobalt. The magnetic Guinier

radius RGSM depends on both the nuclear grain (anisotropy-

field) microstructure and on the magnetic interactions

(exchange-stiffness constant, saturation magnetization,

applied field). It can be quite generally determined from the

analysis of the magnetic field-dependent spin-misalignment

SANS cross-section, which is obtained by subtracting the

nuclear and magnetic scattering in the saturated state from

data at lower fields. This method is easily applicable to

magnetic materials using unpolarized neutrons.
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L-1511 Luxembourg, Grand Duchy of Luxembourg

Robert Cubitt

Institut Laue-Langevin, 71 avenue des Martyrs, F-38042 Grenoble, France

Elizabeth Blackburn

Division of Synchrotron Radiation Research,

Department of Physics, Lund University, SE-22100 Lund, Sweden

Kiyonori Suzuki

Department of Materials Science and Engineering,

Monash University, Clayton, Victoria 3800, Australia

Abstract

In this Supplemental Material we provide additional neutron data and an error estimation in

support of the above paper.

∗ Corresponding author: andreas.michels@uni.lu

1



FIG. 1. Two-dimensional unpolarized total (nuclear and magnetic) SANS cross section dΣ/dΩ of

nanocrystalline Cobalt at selected applied magnetic fields H0 (see insets) (logarithmic color scale).

H0 ‖ ez is applied parallel to the wave vector k0 of the incident neutrons. The average crystallite

size of the Cobalt sample is D = 9.5± 3.0 nm [1].

[1] J. Weissmüller, A. Michels, J. G. Barker, A. Wiedenmann, U. Erb, and R. D. Shull, Phys. Rev.

B 63, 214414 (2001).
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FIG. 2. 2π-azimuthally-averaged dΣ/dΩ data from Fig. 1 (log-log scale). For the clarity of presen-

tation, the number of data points has been reduced.

FIG. 3. Comparison between dΣSM/dΩ (solid lines, Eq. (7) in the paper) and the Guinier ap-

proximation [dashed lines, Eqs. (19) and (20)] at selected internal-field values (see inset) (log-log

scale). The following materials parameters were chosen: RGH = 20.5 nm, A = 1.5 × 10−11 J/m,

µ0Ms = 1.80 T.
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FIG. 4. Relative error of the Guinier approximation. Plotted is the quantity ε(q,Hi) =√
(f − fG)2/f , where f = dΣSM/dΩ (Eq. (7) in the paper) and fG is the Guinier approxi-

mation [Eqs. (19) and (20)]. The following materials parameters were chosen: RGH = 20.5 nm,

A = 1.5× 10−11 J/m, µ0Ms = 1.80 T.
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