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Small-angle scattering of X-rays and neutrons is a routine method for the
determination of nanoparticle sizes. The so-called Guinier law represents the
low-g approximation for the small-angle scattering curve from an assembly of
particles. The Guinier law has originally been derived for nonmagnetic particle-
matrix-type systems and it is successfully employed for the estimation of particle
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scattering; ferromagnets; anisotropy. sizes in various scientific domains (e.g. soft-matter physics, biology, colloidal

chemistry, materials science). An important prerequisite for it to apply is the
Supporting information: this article has presence of a discontinuous interface separating particles and matrix. Here, the
supporting information at www.iucrj.org Guinier law is introduced for the case of magnetic small-angle neutron

scattering and its applicability is experimentally demonstrated for the example
of nanocrystalline cobalt. It is well known that the magnetic microstructure of
nanocrystalline ferromagnets is highly nonuniform on the nanometre length
scale and characterized by a spectrum of continuously varying long-wavelength
magnetization fluctuations, i.e. these systems do not manifest sharp interfaces in
their magnetization profile. The magnetic Guinier radius depends on the applied
magnetic field, on the magnetic interactions (exchange, magnetostatics) and on
the magnetic anisotropy-field radius, which characterizes the size over which the
magnetic anisotropy field is coherently aligned into the same direction. In
contrast to the nonmagnetic conventional Guinier law, the magnetic version can
be applied to fully dense random-anisotropy-type ferromagnets.

1. Introduction

The determination of particle sizes is one of the most impor-
tant daily tasks in many branches of the natural sciences.
While particle sizes in the micrometre regime and above can
be conveniently determined using e.g. optical microscopy, the
size of nanoparticles (with D >~ 1 — 100 nm) requires scanning
and/or transmission electron microscopy, or other scattering
methods such as X-ray or neutron scattering. While the former
techniques inherently suffer from low statistics, the latter
techniques have the advantage of providing statistically
averaged information over a large number of particles. Small-
angle scattering, using either X-rays or neutrons, is one of the
most popular methods for analyzing structures on the meso-
scopic length scale, embracing a broad range of research topics
from condensed-matter and soft-matter physics, to physical
chemistry, biology, and materials science (Svergun et al., 2013).

The well known Guinier law describes the elastic small-
angle scattering of X-rays and neutrons near the origin of
=———H, reciprocal space (Guinier & Fournet, 1955). When the scat-
tering is from a dilute and monodisperse set of objects

@ (particles) with sharp interfaces, then the macroscopic differ-
mm OPEN ACCESS ential scattering cross-section dX/d€2 in the limit of low-
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momentum transfers g < 1.3/Rs can be expressed as (Porod,
1982; Feigin & Svergun, 1987)

dz . dn R
E(q)zﬁ(q—o)wp( 3 ) (1)

where the forward scattering cross-section (dX/d€2)(0) is
proportional to the squared total excess scattering length of
the particle and Rg denotes the particle’s radius of gyration.
Equation (1) is valid for arbitrary particle shapes. From a
Guinier plot, In(d%/dS2) versus ¢°, one can determine Rg,
which is related to the particle size, e.g. RE = (3/5)R* for a
sphere of radius R. The Guinier law is of outstanding impor-
tance for the analysis of small-angle scattering data, particu-
larly at the first stage of the data analysis.

From the foregoing discussion it is clear that the Guinier
law has been derived for nonmagnetic particle-matrix-type
assemblies in the context of the early theoretical develop-
ments of the technique of small-angle X-ray scattering
(SAXS) (Guinier & Fournet, 1955). Therefore, its application
to magnetic materials, which is the subject of the present
article, should be considered with special care; for instance,
the Guinier law is certainly applicable to systems consisting of
saturated and homogeneous magnetic particles in a nonmag-
netic and homogeneous matrix or, likewise, to pores in a
saturated matrix. In this context, we refer to the article by
Burke (1981) who investigated the influence of magnetic
shape anisotropy on the Guinier law of fine ferromagnetic
single-domain particles. By contrast, when the sample is
inhomogeneously magnetized on the nanometre length scale,
i.e. when the magnitude and orientation of the magnetization
vector field M varies continuously with the position r inside
the material, then a central assumption underlying the Guinier
law — namely that of domains (particles) separated by
discontinuous interfaces from the matrix — is violated.
Equation (1), with a constant and field-independent Rg, does
not then describe the low-g region of the magnetic small-angle
neutron scattering (SANS) cross-section. Intuitively, it may be
clear from the previous considerations that an effective
magnetic Guinier radius is expected to depend on the applied
magnetic field as well as on the magnetic interactions (e.g.
exchange, anisotropy, magnetostatics). In the following we
derive the magnetic Guinier law and provide an analysis of
experimental SANS data of nanocrystalline Co.

This article is organized as follows: Section 2 furnishes the
details of the SANS experiment; Sections 3 and 4 introduce
the unpolarized SANS cross-section, the theoretical back-
ground in terms of micromagnetic theory, and the magnetic
Guinier law; Section 5 presents and discusses the experimental
results of the magnetic Guinier analysis on nanocrystalline Co;
and Section 6 summarizes the main results of this study. In the
Supporting information for this article, the two- and one-
dimensional total SANS cross-sections and a graphical
representation of the relative error of the magnetic Guinier
approximation are featured.

2. Experimental

The SANS experiment was conducted at 300 K using the
instrument D11 at the Institut Laue-Langevin, Grenoble. We
used unpolarized incident neutrons with a mean wavelength of
A = 6A and a bandwidth of AA/A = 10% (FWHM). The
instrument offers access to a low g range of 0.016 nm ™' < ¢ <
0.2 nm™" with the two-dimensional position-sensitive detector
placed at a distance of 38.5 m from the sample position. The
external magnetic field Hy (with woHp™* = 16.5 T where g is
the permeability of free space and Hy™* is the maximum
external magnetic field component) was applied parallel to the
wavevector k, of the incoming neutron beam (see Fig. 1 for a
sketch of the neutron setup).

The nanocrystalline Co sample under study was synthesized
by means of pulsed electrodeposition. We emphasize that this
particular sample has been extensively studied in the past
using magnetometry, wide-angle X-ray diffraction, and
unpolarized and spin-polarized SANS (e.g. Michels et al., 2000,
2003, 2014; Weissmiiller et al., 2001; Honecker et al., 2011;
Mettus & Michels, 2015). It is also important to note that it is a
fully dense polycrystalline bulk metal with a nanometre grain
size [average crystallite size: D = 9.5 & 3.0 nm (Weissmiiller et
al., 2001)], not nanoparticles in a matrix. The SANS sample
consisted of a single circular disk. Based on the thickness
(80 pum) and the diameter (2 cm) of the disk, we computed a
demagnetizing factor of N = 0.994 for the case that Hj is
parallel to the surface normal of the sample (Osborn, 1945), in
agreement with the kg || Hy scattering geometry of the SANS
experiment. Using the value of the saturation magnetization
of Co, uoMy = 1.80 T (£1434 kA m™'), this results in a
demagnetizing field of uoNM, = 1.789 T for a fully saturated
sample. In the following all the reported field values are
corrected for demagnetizing effects. To reduce the influence of
inhomogeneous demagnetizing fields at the outer perimeter of
the circular sample, the neutron beam was collimated to a
diameter of 0.8 cm. The neutron transmission was larger than
90% in all measurements, indicating a negligible influence of
multiple scattering.

3. SANS cross-section and micromagnetic theory

When the external magnetic field Hy || e, (applied field
direction H, defines the e, direction of a cartesian coordinate

. sample
velocily selecior Y

Figure 1
Sketch of the neutron setup. The external magnetic field H, || e, is applied
parallel to the wavevector Kk of the incident neutrons. In the small-angle
approximation, the momentum-transfer or scattering vector, q = k; — ko,
varies in the plane perpendicular to ko, ie. q = {q,, q,, 0} = g {cos 6,
sin 6, 0}. The magnitude of q for elastic scattering is given by g = (47/A)
sin (¥/2), where A denotes the mean neutron wavelength (selected by the
velocity selector) and v is the scattering angle. The angle 6 specifies the
orientation of q on the two-dimensional detector.
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system) is applied parallel to the wavevector ko, of the
incoming neutron beam (Fig. 1), the unpolarized elastic
differential SANS cross-section dX/d€2 at momentum-transfer
vector q equals that given in Miihlbauer ef al. (2019).

—( )= —b2 |:‘N‘ + |M‘ sin 9+|M‘ cos 9+|M|

— (M M5 + M;M,)sin 6 cos 9:|,
(@)

where V is the scattering volume and the constant by =
2.91 x 10 A~'m™! relates the atomic magnetic moment [, to
the atomic magnetic scattering length by, = byu, (in small-
angle approximation). N(q) and M(q) = {M (q), M (),
M_(q)} represent, respectively, the Fourier transforms of the
nuclear scattering-length density N(r) and the magnetization
M(r) = {M,(r), M,(r), M (r)}, the superscript ‘*’ refers to the
complex-conjugated quantity, and 6 denotes the angle
between q and e,. Note that in the small-angle approximation
the component of q along the incident beam (ko || e,) is
negligible compared with the other two components, such that
q = {q., q,, 0}. This emphasizes the fact that SANS predomi-
nantly probes correlations in the plane perpendicular to k.

Further analysis of the magnetic SANS cross-section
[equation (2)] requires expressions for the magnetization
Fourier amplitudes M, , .. In the works by Honecker &
Michels (2013) and Mlchels et al. (2016) a quite general theory
of magnetic SANS based on the continuum theory of micro-
magnetics has been developed. In the following we sketch the
main ideas of the micromagnetic SANS theory in order to
achieve a self-contained presentation. The approach considers
two origins of spin misalignment. (i) Spatial nanometre-scale
variations in the orientation and/or magnitude of the magnetic
anisotropy field H,(r) (e.g. at a grain boundary in a single-
phase nanocrystalline ferromagnet). Such anisotropy-field
fluctuations give rise to torques on the magnetization M and
result in a concomitant deviation of M from the mean
magnetization direction (given by a large applied field).
(ii) Spatial variations of the saturation magnetization M,(r)
give rise to local magnetostatic stray fields (e.g. at a particle-
matrix interphase in a nanocomposite), which also result in a
magnetic SANS contrast. This scenario is adapted to the
inhomogeneous magnetic microstructure which is found in
many polycrystalline magnets.

The micromagnetic theory takes into account the isotropic
and symmetric exchange interaction, magnetic anisotropy, as
well as the Zeeman and magnetodipolar interaction energies.
As detailed in the pertinent textbooks (Brown, 1963;
Aharoni, 1996; Kronmiiller & Fihnle, 2003; Kronmiiller &
Parkin, 2007), variational calculus leads to a set of nonlinear
partial differential equations for the equilibrium magnetiza-
tion configuration M(r). For the static case, the equations of
micromagnetics (so-called Brown’s equations) can be conve-
niently expressed as a balance-of-torques equation,

M(r) x H(r) = 0. (©)

Equation (3) expresses the fact that at static equilibrium the
torque on the magnetization M(r) caused by an effective
magnetic field H.(r) vanishes at each point r inside the
material. The effective field is obtained as

Heff(r) = Hex(r) + Hp(r) + HO + Hd(r)7 (4)

where He,(r) = I3 AM(r) represents the exchange field (with A
the Laplace operator), H,(r) is the magnetic anisotropy field,
H, is a uniform applied magnetic field, and Hy(r) denotes the
magnetostatic or magnetodipolar interaction field. The
magnetostatic exchange length Ly = [24/(poM?)]"? is of the
order of a few nanometres for many magnetic materials [/y; 2~
3-10 nm (Kronmiiller & Fihnle, 2003)], A is the exchange-
stiffness constant and M; is the saturation magnetization.
Then, in the approach-to-saturation regime, the micro-
magnetic equations can be linearized, and closed-form
expressions for the magnetization Fourier components M, (q)
and My(q) can be obtained [see Honecker & Michels (2013)
and Michels et al. (2016) for details].

Using the results for ]NVIX and M,, the unpolarized elastic
SANS cross-section dX/dS2 in the parallel scattering geometry
[equation (2)] can be expressed in compact form as

dx

dQ
where the (nuclear and magnetic) so-called residual SANS
cross-section,

(0. H) =2 ) + Su@Ruta. H). )

d=, 87 /~p ~ 2

res _ 20 (N b2 M )’ 6
dQ V(H+H|S’ ©)
is measured at complete magnetic saturation (|1\72|2 = |]\7[S|2),
and the remaining spin-misalignment SANS cross-section

dz 87 ~ 2 ~ 12
d{SZM = 7[)2 |:|Mx| sin® 0 + |M,|" cos® 6

— (MM + M:M,) sin 6 cos 9:| = Su(9)Rulq. Hy),

™

describes the purely magnetic small-angle scattering caused by
the misaligned spins with related Fourier amplitudes ]VIx(q)
and My(q) [compare with equation (2)]. Since the magnetic
Guinier law is related to the spin-misalignment scattering, it is
necessary to separate the total d¥X/d2 into dX.,/dS2 and
d¥s\/d2 [equation (5)]. In the analysis of experimental data,
dX,./d2 can be measured at a saturating applied field and
subtracted from the d¥/d2 at lower fields to obtain the field-
dependent dXg,/dS2.

The quantity Sy denotes the anisotropy-field scattering
function, which is proportional to the magnitude square of the
Fourier transform H »(q) of the magnetic anisotropy field

H,(r), i.e. Sy Hp(q) This function contains information on
the strength and spatial structure of the magnetic anisotropy
field. In the approach-to-saturation regime, which is the
validity range of the micromagnetic SANS theory, Sy is
independent of the applied magnetic field. We further note
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that for a statistically isotropic material Sy depends only on
the magnitude g of the scattering vector q, not on its orien-
tation (see below). The dimensionless micromagnetic
response function Ry depends on g as well as on the internal
magnetic field H; = Hy — NM,, where N denotes the demag-
netizing factor. More specifically (k, || Hy),

2
p’(g, H)
Ry(q, H) =——, ®)
where the dimensionless function,
M M
plq, Hy) = = s ©)
Hy(q, H) H(1+ kg

depends on the effective magnetic field H.g(q, H;) [not to be
confused with H.g(r) in equation (3)] and on the micro-
magnetic exchange length,

24\
w) = () (10)

The quantity /iy characterizes the field-dependent size of
perturbed regions around microstructural defects, and, as we
will see below, it is this quantity which renders the magnetic
Guinier radius field dependent. By inserting typical values for
the material parameters of Co [A = 2.8 x 107" Jm™" and
oM, = 1.80 T (Michels & Weissmiiller, 2008)], it is seen that
the exchange length /i varies between about 200-2 nm when
the internal field is changed between 0.001-10 T. This length
scale falls well into the resolution regime of the SANS tech-
nique.

4. Magnetic Guinier law

In order to derive a Guinier expression for magnetic SANS,
analogous to equation (1), we look in the following for the
low-g behavior of the spin-misalignment SANS cross-section
dXs\M/d2 = Su(q)Ru(q, H;) [equation (7)]. The sample volume
which is probed by the neutrons typically contains many
defects (e.g. crystallites separated by grain boundaries), each
one having a different orientation and/or magnitude of the
magnetic aﬁr}zisotropy field. To obtain a low-g approximation
for Sy o< Hy(q), we make the assumption that the total
magnetic anisotropy field of the sample, H,(r), is the sum of
the anisotropy fields of the individual defects i (Weissmiiller et
al., 2001, 1999) i.e.

H,(r) = Z H, (1) (11)

This decomposition also applies to the Fourier transform
H,(q) of Hy(r), i.e.

H,(q) = > H, (), (12)

so that

N N -
-Y'H,+ H, (13)
i=1 i]

where we have assumed that the H . are real-valued quan-

tities. If the H of the 1nd1v1dual defects are statistically

uncorrelated (random anisotropy), then terms H H b, With i

# j take on both signs with equal probability. Consequently,

the sum over these terms vanishes and

N
fi(0) = ) 0, (). (14)

Equation (14) suggests that Hi, and hence Sy « H?J, can be
computed for an arbitrary arrangement of defects once the
solution for the single-defect case Hp,i(q) is known. This can,
for example, be accomplished for an idealized nanocrystalline
ferromagnet, where the crystallites (acting as magnetic
defects) have random crystallographic orientation and where
the anisotropy field arises exclusively from the magnetocrys-
talline anisotropy. Because each grain is a single crystal, the
anisotropy field in the grain is a constant vector, i.e. Hp ; #
H,, ,(r), and the anisotropy field Fourier amplitude is obtained
by the following form-factor integral (Weissmiiller et al., 2001):

~

i (q) = / exp(—iq - 1) . (15)

p.i

p.i
(27r)3/ 2

where the integral extends over the volume of grain i. For the
example of a spherical grain shape [V, ;= (47/3)R;], we obtain
the well known result that

~ H j (qR.)
H ,(qR) = 3V,
p: (2 )3/2 qR

1

IN-Ip.i(q) = ) (16)

where ji(z) denotes the spherical Bessel function of the first
order.

The square of equation (16) is identical, except for the
prefactor, to the nuclear SANS cross-section of an array of
noninterfering spherical particles, and general asymptotic
results at small and large g are therefore immediately trans-
ferable; in particular, the Guinier approximation relates
Su(q) x Flg(q) at small-scattering vectors to the radius of
gyration Rgy of the magnetic anisotropy field, according to
Weissmiiller et al. (2001),

2R2
qTGH> . 17)

Su(q) = Su(0) exp <_

Similar to nuclear SANS and SAXS, where Rg is a measure
for the particle size, Rgy deduced from Sy may be seen as a
measure for the size of regions over which the magnetic
anisotropy field H,(r) is homogeneous. For the special case of
an idealized nanocrystalline ferromagnet (random anisotropy
and magnetocrystalline anisotropy only), Rgy is closely
related to the crystallite size.

Equation (17) can be combined with the corresponding
small-g result for the response function [equation (18)]. Taylor
expansion of Ry around g = 0 yields:

IUCr) (2020). 7, 136142
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2 2 2 2672
plg. H) p P q-6l
Ru(q, Hy) = —y = EO (1 — ZI%IqZ) = Eoexp(— 3 "y,

(18)

where py = p(q = 0) = MJ/H; [compare with equation (9)].
Inserting equations (17) and (18) into d¥gy/d2 = SyRy, we
have

dXgy  dXgm quéSM
~ > (g=0 -, 19
o e @=0) exp(- T (19)
where
12A
R%}SM(Hi) = RZGH + 6112—I(Hi) = R%}H + Ma (20)

represents the magnetic field-dependent Guinier radius. This
relation provides a means to determine the exchange constant
A from field-dependent SANS measurements. Note that
dXg/d2 (0) o p3 o« H? [compare with equation (9)]. The
observation that Rgsy depends on Rgy and on the micro-
magnetic exchange length /i is a manifestation of the fact that
the magnetic microstructure in real space (for which Rggy is
representative) corresponds to the convolution of the nuclear
grain microstructure (Rgy) with field-dependent micro-
magnetic response functions (/g).

Up to now we have only discussed the magnetic Guinier
approximation for the parallel scattering geometry (ko || Hy),
where 2m-averaged magnetic SANS data can be used for the
analysis in terms of equation (19). In the perpendicular
geometry (ko L Hy) an additional scattering term SyRy,
related to magnetostatic fluctuations, appears in dXgy,/d<2,
which complicates the discussion. Two comments are then in
place. (i) Since Sy, ]Tlg(q), the S\R\ contribution to dXgy,/
d2 can be neglected for single-phase ferromagnets, where
fluctuations in the saturation magnetization, M, are weak.
(i) Inspection of the expression for the magnetostatic
response function Ry in the perpendicular geometry [equa-
tion (29) in Honecker & Michels (2013)] shows that this
function vanishes by taking an average of the two-dimensional
dXg\/dS2 along 6 = 0° (or 8 = 180°), while the corresponding
Ru(6 = 0°) = p* [equation (28) in Honecker & Michels (2013)]
is almost equal (besides a factor of 1/2) to Ry(6 = 0°) = p*/2 in
the parallel geometry. In other words, these considerations
imply that the magnetic Guinier law equation [equation (19)]
can also be employed to analyze (6 = 0°) sector-averaged data
in the ko L H, geometry.

5. Experimental results and discussion

As expected, the two-dimensional SANS intensity distribu-
tions of the nanocrystalline Co sample are isotropic (6 inde-
pendent) at all fields investigated. Although the individual
scattering contributions to equation (2) are highly anisotropic,
which is owing to the trigonometric functions and the
magnetization Fourier components ]f\v/lxvy’z(q), which them-
selves may depend on the angle 6 via the magnetodipolar
interaction [compare with Fig. 5 in Michels (2014)], their sum
results in an isotropic (6 independent) dX/d2 for a statistically

isotropic grain microstructure (see the Supporting informa-
tion). This supports the assumption made in the micro-
magnetic theory of a statistically isotropic grain
microstructure. By contrast, for the perpendicular scattering
geometry (ko L Hj), the magnetic SANS cross-section of
untextured samples exhibits a variety of angular anisotropies
(e.g. Loffler et al., 2005; Bischof et al., 2007; Michels et al.,
2003). The two-dimensional nuclear and magnetic SANS data
were azimuthally averaged over an angle of 2m. To apply
equations (19) and (20) to experimental dXg,/d2 data
[compare with equation (7)], the scattering close to saturation
(here at 14.71 T internal field), corresponding to the residual
SANS cross-section d¥../d2 [equation (6)], needs to be
subtracted from the total d¥/d<2 at lower fields [equation (5)].
The subtraction procedure along with the room-temperature
magnetization curve are depicted in Fig. 2. Besides eliminating
the nuclear and the longitudinal magnetic scattering, the
subtraction also removes any background scattering contri-
bution.

By inspection of Fig. 2(c), we see that the magnetization
state of the specimen used in the SANS experiment (indicated
by the large red data points) falls well into the approach-to-
saturation regime, which is reached for puoH; = 0.27 T(M/M, =,
96%, see the discussion below). The shape of dXg/dS2 is
substantially different to that of d¥/d€2, which is owing to the
subtraction of the nuclear and saturation scattering [see also
the discussion in the work by Bick er al. (2013)]. When the
internal field is decreased from 0.671 to 0.213 T, dXg/dS2
increases strongly by a factor of ~6-7 at the smallest
momentum transfers (q). The strong field dependence of
dXg\/d2 supports the notion that scattering caused by
transversal spin misalignment represents by far the dominant
contribution to dX/d€2 (see also Fig. 3 in the work by Michels,
2014). The experimental neutron data in Fig. 2(b) cannot be
reproduced by decomposing the cross-section into a set of
noninterfering single-domain particles. Careful scrutiny of
Fig. 2(b) reveals that the point with the largest curvature in
d¥s\/dS2 evolves to larger g values with increasing Hj, in
agreement with the concomitant decrease of the exchange
length /i in equation (20).

Fig. 3 features the magnetic Guinier analysis on nanocrys-
talline Co. Fig. 3(a) shows the Guinier plots, i.e. In(dXg\/d€2)
versus ¢°, along with the weighted linear least-squares fits to
equation (19), whereas Fig. 3(b) displays the obtained Rgsy as
a function of H; ' together with a weighted linear least-squares
fit to equation (20). In Fig. 3(c), the field dependence of d g,/
dQ2 (¢ = 0) is displayed. The Guinier plots in Fig. 3(a) reveal
that straight-line fits may not be appropriate for the data at the
two smallest internal fields of 0.213 and 0.252 T, where an
upward curvature becomes visible at the smallest g, in contrast
to the data at higher field. In line with this observation we see
that the dataset in Fig. 3(c) starts to deviate from the expected
linear behavior for these two smallest internal fields (open
symbols). This discrepancy can be explained with the growing
deviations from the small-misalignment approximation for
decreasing fields and can be taken as a criterion for the
validity range of the approach. Therefore, the two data points
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Figure 2

(a) 2m-azimuthally-averaged total nuclear and magnetic SANS cross-section d¥/d2 of nanocrystalline Co versus momentum transfer g at a series of
internal magnetic fields (see inset) (log-log scale) (ko || Hp). (b) Corresponding spin-misalignment SANS cross-section d Xg),/d2 obtained by subtracting
the d¥/dS2 data at 14.71 T [orange data points in (a)] from the d¥/d2 at lower fields. (¢) Magnetization curve of nanocrystalline Co (only the upper-right
quadrant is shown). The large red data points indicate the internal-field values where the SANS data were taken. The horizontal dashed line indicates the
saturation-magnetization value of oM, = 1.80 T. The vertical dashed line indicates the approach-to-saturation regime (M/M, = 96%).
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Figure 3

Magnetic Guinier analysis on nanocrystalline Co. (a) Guinier plot In(d Zgy/d€2) versus ¢* and fits (solid lines) to equation (19) at selected values of the
internal magnetic field (see inset). (b) Plot of R&sy versus H; ' and fit (solid line) to equation (20). In the fitting routine, Rgy and A were treated as
adjustable parameters. (c) Field dependence of (dXgy/dR2) (g = 0). The solid line represents dXg\/dS2 (g = 0) o< A% In (b) and (c), the last two data
points (open symbols), corresponding to internal fields of 0.213 and 0.252 T, have been excluded from the fit analysis.

at 0.213 and 0.252 T were not taken into account in the Guinier
analysis, which yields Rgg = 205+ 12nm and A =
(1.5 £0.2) x 107" I m™ ' [Fig. 3(b)]. The A value perfectly fits
within the range of values reported in the literature (Kron-
miiller & Fiahnle, 2003; Skomski, 2008), while the Rgy value
corresponds to a spherical particle radius of R = 26.5 nm,
assuming the relation Rgy = (3/5) R? which is valid for
monodisperse particles. This value is larger than the average
crystallite size of 10 nm (determined by X-ray diffraction), an
observation, which can be naturally explained by the presence
of a particle-size distribution in our Co sample. It is well
known from nuclear SANS theory that a size distribution
strongly weighs the Rg value towards the largest features in
the distribution; for instance, for spherical particles and point
collimation, R s then related to the ratio of the eighth over
the sixth moment of the size distribution (Feigin & Svergun,
1987; Kostorz, 1982). Therefore, for the determination of the

scaling relation between Rgy and the average crystallite size,
knowledge on the particle-size distribution is required. Lastly,
as can be seen in Fig. 3(¢), the extrapolated forward-scattering
cross-section dXg\/d2 (¢ = 0) also obeys the theory predic-
tion and follows the dZg\/dS2 (¢ = 0) o< H; * scaling [compare
with equation (18)].

The present theory describes the magnetic SANS cross-
section of polycrystalline bulk ferromagnets near magnetic
saturation, and their low-q behavior (magnetic Guinier law). It
assumes that the perturbing magnetic anisotropy fields of the
individual microstructural defects, which cause a perpendi-
cular magnetization component and hence a contrast for
magnetic SANS, vary randomly from defect site to defect site.
For the particular case of a nanocrystalline bulk ferromagnet
composed of single-crystal grains and atomically-sharp grain
boundaries (magnetocrystalline anisotropy only), the char-
acteristic correlation length of the anisotropy-field variation is

IUCr) (2020). 7, 136142
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related to the average crystallite size. Other potential sources
of spin inhomogeneity, such as surface (grain-boundary)
anisotropy or magnetoelastic anisotropy caused by long-
ranged stress fields, are not explicitly included in our theory.
Likewise, this approach is not expected to describe the
magnetic SANS of inhomogeneously magnetized nano-
particles, which are embedded in a nonmagnetic matrix. For
such a microstructure, boundary conditions for the magneti-
zation at the particle-matrix interface must be included in the
micromagnetic description of SANS, for which there is
currently no analytical solution. This poses a challenge for
future studies.

6. Conclusions

Based on the continuum theory of micromagnetics, we have
introduced the magnetic Guinier law for random-anisotropy-
type ferromagnets [equations (19) and (20)] and we have
confirmed the validity of the approach by analyzing experi-
mental data on nanocrystalline cobalt. The magnetic Guinier
radius Rgsm depends on both the nuclear grain (anisotropy-
field) microstructure and on the magnetic interactions
(exchange-stiffness constant, saturation magnetization,
applied field). It can be quite generally determined from the
analysis of the magnetic field-dependent spin-misalignment
SANS cross-section, which is obtained by subtracting the
nuclear and magnetic scattering in the saturated state from
data at lower fields. This method is easily applicable to
magnetic materials using unpolarized neutrons.
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FIG. 1. Two-dimensional unpolarized total (nuclear and magnetic) SANS cross section d3/d2 of
nanocrystalline Cobalt at selected applied magnetic fields Hy (see insets) (logarithmic color scale).
Hy || e, is applied parallel to the wave vector kg of the incident neutrons. The average crystallite

size of the Cobalt sample is D = 9.5+ 3.0nm [1].

[1] J. Weissmiiller, A. Michels, J. G. Barker, A. Wiedenmann, U. Erb, and R. D. Shull, Phys. Rev.
B 63, 214414 (2001).
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FIG. 2. 2m-azimuthally-averaged dX/dS) data from Fig. 1 (log-log scale). For the clarity of presen-

tation, the number of data points has been reduced.
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FIG. 3. Comparison between dXgp/dQ (solid lines, Eq. (7) in the paper) and the Guinier ap-
proximation [dashed lines, Eqgs. (19) and (20)] at selected internal-field values (see inset) (log-log

scale). The following materials parameters were chosen: Rgy = 20.5nm, A = 1.5 x 1071 J/m,

oM, = 1.80T.
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FIG. 4. Relative error of the Guinier approximation. Plotted is the quantity e(q,H;) =
V(f = fa)?/f, where f = dXgpn/dQY (Eq. (7) in the paper) and fg is the Guinier approxi-
mation [Egs. (19) and (20)]. The following materials parameters were chosen: Rgy = 20.5nm,

A=15x10""J/m, pgM; = 1.80T.



