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The magnetization profile and the related magnetic small-angle neutron

scattering cross section of a single spherical nanoparticle with Néel surface

anisotropy are analytically investigated. A Hamiltonian is employed that

comprises the isotropic exchange interaction, an external magnetic field, a

uniaxial magnetocrystalline anisotropy in the core of the particle and the Néel

anisotropy at the surface. Using a perturbation approach, the determination of

the magnetization profile can be reduced to a Helmholtz equation with

Neumann boundary condition, whose solution is represented by an infinite

series in terms of spherical harmonics and spherical Bessel functions. From the

resulting infinite series expansion, the Fourier transform, which is algebraically

related to the magnetic small-angle neutron scattering cross section, is

analytically calculated. The approximate analytical solution for the spin

structure is compared with the numerical solution using the Landau–Lifshitz

equation, which accounts for the full nonlinearity of the problem. The signature

of the Néel surface anisotropy can be identified in the magnetic neutron

scattering observables, but its effect is relatively small, even for large values of

the surface anisotropy constant.

1. Introduction

Magnetic small-angle neutron scattering (SANS) is a powerful

technique for investigating spin structures on the mesoscopic

length scale (�1–100 nm) and inside the volume of magnetic

materials (Mühlbauer et al., 2019; Michels, 2021). Recent

SANS studies of magnetic nanoparticles, in particular

employing spin-polarized neutrons, demonstrate that their

spin textures are highly complex and exhibit a variety of

nonuniform, canted or core–shell-type configurations [see e.g.

Disch et al. (2012), Krycka et al. (2014), Hasz et al. (2014),

Günther et al. (2014), Maurer et al. (2014), Dennis et al. (2015),

Grutter et al. (2017), Oberdick et al. (2018), Ijiri et al. (2019),

Bender et al. (2019), Bersweiler et al. (2019), Zákutná et al.

(2020), Honecker et al. (2022) and references therein]. Surface

anisotropy, vacancies or the presence of antiphase boundaries

are generally considered to be at the origin of spin disorder in

nanoparticles (Berger et al., 2008; Wetterskog et al., 2013;

Nedelkoski et al., 2017; Köhler et al., 2021a; Batlle et al., 2022).

Magnetic SANS data analysis largely relies on structural form-

factor models for the cross section, borrowed from nuclear

SANS, which do not properly account for the existing spin

inhomogeneity inside magnetic nanoparticles or nanomagnets

(NMs).
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Progress in magnetic SANS theory (Honecker & Michels,

2013; Michels et al., 2014; Mettus & Michels, 2015; Erokhin et

al., 2015; Metlov & Michels, 2015, 2016; Michels et al., 2016,

2019; Mistonov et al., 2019; Zaporozhets et al., 2022) strongly

suggests that, for the analysis of experimental magnetic SANS

data, the spatial nanometre-scale variation of the orientation

and magnitude of the magnetization vector field must be taken

into account and macrospin-based models – assuming a

uniform magnetization – are not adequate. The starting point

for a proper analysis of the scattering problem is a micro-

magnetic continuum expression for the magnetic energy of the

system. In the static case, this then leads to Brown’s equations

(Brown, 1963), a set of nonlinear partial differential equations

for the magnetization along with complex boundary condi-

tions on the surface of the magnet. From these equations the

Fourier image and the magnetic SANS cross section may be

obtained.

In this paper, we present an analytical treatment of the

magnetic SANS cross section of a spherical NM with Néel

surface anisotropy (Néel, 1954). This particular form of

anisotropy arises because in an NM a significant fraction of

atoms belong to the surface (with no neighbours on one side),

and their magnetic properties such as exchange and aniso-

tropy can be strongly modified relative to the bulk atoms.

The manuscript is organized as follows. In Section 2, we

calculate the real-space spin structure of a spherical NM using

classical micromagnetic theory within the second-order

perturbation approach. In Section 3, we compute the three-

dimensional Fourier transform of the real-space spin structure,

which directly yields the magnetic neutron scattering cross

section and the pair-distance distribution function. The

analytical results are benchmarked by comparing them with

numerical finite difference simulations using the Landau–

Lifshitz equation of motion. Finally, Section 4 summarizes the

main findings of this study.

We also make reference to our accompanying numerical

study (Adams et al., 2022) where, in contrast to the present

analytical work, the full nonlinearity of the problem is

considered.

2. Micromagnetic theory

In the static micromagnetic approach (Brown, 1963), the

magnetic configuration of a system is described by the

continuous magnetization vector field M(r), which has a

constant magnitude kM(r)k = M0 . The saturation magnetiza-

tion M0 is only a function of temperature. The normalized

magnetization vector field is then defined as

mðrÞ ¼ MðrÞ=M0 ¼ ½mxðrÞ;myðrÞ;mzðrÞ�; ð1Þ

where r denotes the position vector. Our Hamiltonian for the

NM includes the isotropic exchange interaction, the Zeeman

energy, a uniaxial magnetic anisotropy for spins in the core

and Néel surface anisotropy for those on the surface. In the

continuum approach, it reads

H ¼ � A
X

�2fx;y;zg

Z
V

m��m� d
3r�M0B0

Z
V

m d3r

� Kc

Z
V

m � eAð Þ2 d3rþ A
X

�2fx;y;zg

I
@V

m�rm� � n d2r

� Ks

2

X
�2fx;y;zg

I
@V

n�
�� ��m2

� d
2r; ð2Þ

where A is the exchange stiffness constant, r is the del

operator, � is the Laplace operator, B0 is a constant applied

magnetic field, Kc > 0 denotes the uniaxial core anisotropy

constant, eA is a unit vector specifying the arbitrary core

anisotropy axis and Ks > 0 is the Néel surface anisotropy

constant (Néel, 1954).

n ¼ ½sin � cos�; sin � sin�; cos �� ð3Þ
is the surface normal to the boundary of the NM, where � and
� are the usual spherical angles (Garanin & Kachkachi, 2003;

Kachkachi, 2007). In (2), the two surface integrals take into

account the boundary conditions for the magnetization on the

surface (@V) of the NM of volume V, which result from the

exchange interaction and the Néel term. The magnetodipolar

energy has been ignored in the calculations because of its

mathematical complexity and since it is expected to be of

minor relevance for smaller-sized NMs [see the recent

atomistic simulations by Köhler et al. (2021b)].

For small deviations from the homogeneous magnetization

state, a perturbation approach is applicable. Let m0 be the

principal unit vector (average direction) associated with m(r)

and let the vector function w(r) ? m0 describe the spin

misalignment. One can then write

mðrÞ ¼ m0 1� kwðrÞk2� �1=2þwðrÞ; kmðrÞk ¼ 1: ð4Þ
Assuming that  x;  y;  z � 1, the following second-order

Maclaurin expansion in w is used to find an approximate

closed-form solution for m(r):

mðrÞ ffi m0 þ wðrÞ � 1
2 kwðrÞk2m0; ð5Þ

where m0 is taken as a known constant vector in subsequent

calculations. We choose the orthonormal vector base (Garanin

& Kachkachi, 2009),

g0 ¼ m0;

g1 ¼
m0 � eA
km0 � eAk

;

g2 ¼
ðm0 � eAÞm0 � eA
kðm0 � eAÞm0 � eAk

;

8>>><
>>>: ð6Þ

and the parametrization

wðrÞ ¼  1ðrÞg1 þ  2ðrÞg2; ð7Þ
and introduce the dimensionless coordinates n = r/R (with � =
knk = r/R), where r is the position vector,

r ¼ ½r sin � cos�; r sin � sin�; r cos ��; ð8Þ
and R denotes the radius of the NM. The minimization of the

Hamiltonian (2) then leads to the well known Helmholtz

research papers

1476 Michael P. Adams et al. 	 Magnetic neutron scattering: analytical treatment J. Appl. Cryst. (2022). 55, 1475–1487

electronic reprint



equation with Neumann boundary conditions on the unit

sphere (Kachkachi, 2007; Garanin & Kachkachi, 2003),

�n � �2�
� �

 � ¼ 0; � 2 f1; 2g; ð9Þ

d �
d�

����
�¼1

¼
X

�2fx;y;zg
���jn�j; ð10Þ

where the constants are defined as

�21 ¼ m0 � b0 þ 2kcðm0 � eAÞ2; ð11Þ

�22 ¼ m0 � b0 þ 2kc 2ðm0 � eAÞ2 � 1
� �

; ð12Þ

��� ¼ ksðm0 � e�Þ ðg� � e�Þ; ð13Þ
with the dimensionless quantities

kc ¼
R2Kc

2A
; ks ¼

RKs

2A
; b0 ¼

R2M0

2A
B0: ð14Þ

The e� (with � = x, y, z) in (13) denote the unit vectors of the

Cartesian laboratory coordinate frame (in which n and r are

defined). We emphasize that there are only two independent

differential equations for w, which is a consequence of the

constraint km(r)k = 1.

In our graphical representations, we will frequently use the

following values: kc = 0.1 and ks = 3.0, which (using R = 5 nm

and A = 10�11 J m�1) correspond to Kc = 80 kJ m�3 and Ks =

12 mJ m�2 (Gradmann, 1986; O’Handley, 2000; Batlle et al.,

2022). For M0 = 1.7 � 106 A m�1, the relation between b0
(dimensionless) and the external field is B0 = (8/17)b0 � 1 T.

The fundamental solution of the homogeneous Helmholtz

equation (9) is well known (Weber & Arfken, 2003; Riley et al.,

2006). Its non-singular part can be expressed in spherical

coordinates as an infinite series in terms of spherical harmo-

nics Y‘m(�, �) and spherical Bessel functions of the first kind

jn(i���),

 � ¼
P1
‘¼0

P‘
m¼�‘

c
�
‘m j‘ði���ÞY‘mð�; �Þ: ð15Þ

The imaginary number ‘i’ in the argument of the spherical

Bessel function is due to the negative sign in the Helmholtz

equation (9). The expansion coefficients c
�
‘m are obtained from

the Neumann boundary condition (10) using the method of

least squares (see Appendix A). From Appendix A it is seen

that the zero-order term with ‘ = 0 vanishes. This physically

makes sense, since the spin misalignment in our model is

caused by the Néel surface anisotropy and thus, for symmetry

reasons, there is no misalignment at the centre of the NM, i.e.

 �(� = 0, �, �) 
 0. By contrast, the largest spin misalignment

is found at the boundary of the NM, i.e. � = 1. Further, we find

that the coefficients c
�
‘m vanish in the case of odd ‘ and m,

while they are real valued and even with respect to the index

m, i.e. c�‘m = c
�
‘;�m. Taking these properties into account, one

can conveniently express the solution in terms of the

associated Legendre polynomials Pm
‘ ðcos �Þ with ‘ = 2	 and

m = 2
 {note that we use the convention that Y‘mð�; �Þ =
N‘mP

m
‘ ðcos �Þ exp ðim�Þ [p. 378 (14.30.1) of Olver et al. (2010)]},

 � ¼
P1
	¼1

P	

¼0

a�	
�	ð���ÞP2

2	 ðcos �Þ cosð2
�Þ; ð16Þ

where we define [compare pp. 624–626 of Weber & Arfken

(2003)]

�	ð�Þ ¼ j2	ði�Þ ¼
�1=2

2

X1
s¼0

ð�1Þ	ð�=2Þ2ðsþ	Þ
s!�ð2	þ sþ 3=2Þ ; ð17Þ

and the expansion coefficients are given by

a�	
 ¼ 2ksN2	;2


1þ 

;0
g� � diag Ix2	;2
; I

y
2	;2
; I

z
2	;2


� � �m0

���
0
	ð��Þ

; ð18Þ

with

I�‘m ¼ R2�
0

R�
0

Y�
‘;mð�; �Þjn�j sin � d� d� ð19Þ

and

N‘m ¼ 2‘þ 1

4�

ð‘�mÞ!
ð‘þmÞ!

� �1=2

: ð20Þ

In (18), 

, 0 is the Kronecker delta function, diag[ . . . ] denotes
a 3 � 3 diagonal matrix and �0

	ð�Þ is the first-order derivative
of (17) with respect to �. For some small values of ‘ and m, the

exact solutions of the integrals I�‘m are listed in Table 1 in

Appendix B.

From (18) it is seen that the functions  � depend linearly on
ks, such that for ks = 0 the magnetization of the NM is

homogeneous (as expected). Since we assume that

 x;  y;  z � 1, it is clear that the validity of our solution is

restricted to a finite range 0 � ks � ks, max . Taking only the

terms with 	 = 1 into account (corresponding to ‘ = 2), the

remaining (second-order) expression reads

 �ð�; �; �Þ ’ � 15ks
32

�1ð���Þ
���

0
1ð��Þ

g� � VVVð�; �Þ �m0; ð21Þ

where

VVVð�; �Þ ¼ diag
cos2 � � 1=3� sin2 � cosð2�Þ
cos2 � � 1=3þ sin2 � cosð2�Þ

�2ðcos2 � � 1=3Þ

2
4

3
5: ð22Þ

A reasonable approximation for small �� in (21) is obtained by
taking into account the first two terms in the infinite series (17)

for �	(�). This results in the following expression [compare

(21)]:

�1ð���Þ
���

0
1ð��Þ

’ 1

4

�2��
4 þ 14�2

�2� þ 7
: ð23Þ

In the limit ��!0 (small B0 and small Kc), this expression

reduces to a quadratic function in �,

lim
��!0

�1ð���Þ
���

0
1ð��Þ

� �
¼ �2

2
: ð24Þ

The case of an infinite applied magnetic field B0 , or of a strong

uniaxial core anisotropy [compare (11) and (12)], corresponds

to the limit
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lim
��!1

�1ð���Þ
���

0
1ð��Þ

� �
¼ 0; ð25Þ

which recovers the expected result of zero spin misalignment.

Note that the limit ��!1 is only obtained using all terms of

the infinite series (17).

Of particular interest is the behaviour of  � as a function of

the radius R of the NM. Inspecting the Hamiltonian (2), it

becomes clear that the surface anisotropy energy scales as R2,

while the uniaxial core anisotropy energy scales as R3. Since

the core and surface anisotropies act in opposite ways (trying

to make the spin structure more homogeneous and more

inhomogeneous, respectively), we see that an increasing radius

R corresponds to a decreasing  � . This behaviour reflects the
NM’s surface-area-to-volume ratio. With (21) it is not possible

to make any prediction in this regard, because until this point

we have not included the principal unit vector m0 in the

minimization of the Hamiltonian. Generally, m0 is a function

of ks, kc , b0 and eA.

In the special case when the uniaxial anisotropy axis and the

applied magnetic field are both directed parallel to the z axis

(eA = [0, 0, 1] and b0 = [0, 0, b0]), the principal unit magneti-

zation vector may be written as

m0 ¼ ½ð1=21=2Þ sin �; ð1=21=2Þ sin �; cos ��; ð26Þ
where � 2 ½0; arccosð1=31=2Þ�. This choice is justified by the

effective cubic symmetry of the Néel anisotropy as shown in

research papers
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Figure 1
The normalized effective energy potential of the Néel surface anisotropy
as a function of the Cartesian components of the average magnetization
vector m0 = [sin�cos�, sin� sin�, cos�], computed via numerical
integration of the surface contribution in (2) and using the second-order
approximation (21). Parameters are eA = [0, 0, 1], b0 = 0, kc = 0.1 and ks =
3.0. The minima of the Néel surface contribution are in this case along the
cubic space diagonals m0 = [
1, 
 1, 
 1]/(31/2), while the maxima
correspond to the Cartesian axes 
 ex , 
 ey , 
 ez . The effective energy
potential has cubic symmetry and is approximately proportional to a
function of the type ’ m4

0;x þm4
0;y þm4

0;z [see also Garanin & Kachkachi
(2003)].

Figure 2
A comparison between the numerical solution using the Landau–Lifshitz equation (upper row) and the second-order analytical solution (21) for
kwðnÞk ¼ ½ 2

1ðnÞ þ  2
2ðnÞ�1=2 (lower row). (a) and (e) show kwk on the boundary surface (� = 1), while (b)–(d) and ( f )–(h) display selected planar cuts in

(�x, �y, �z) space. The following parameters are used: eA = ez , b0 = [0.4, 0, 0.4] (B0 ffi 266 mT), kc = 0.1, ks = 3.0 and m0 = [sin�cos�, sin� sin�, cos�],
where � = 0� and � = 40�.
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Fig. 1. This result was already predicted by Garanin &

Kachkachi (2003). The solutions for  1, 2(�, �, �) [using the

particular m0 (26)] then read

 1 ’
15ks
32

�1ð�1�Þ
�1�

0
1ð�1Þ

sin2 � cosð2�Þ sin �; ð27Þ

 2 ’
15ks
32

�1ð�2�Þ
�2�

0
1ð�2Þ

ð1� 3 cos2 �Þ sin � cos�: ð28Þ

In Fig. 2, the analytical solution (21) (lower row) is compared

with the numerical solution based on the Landau–Lifshitz

equation _mm ¼ ��m� Beff � �m� ðm� BeffÞ (upper row)

(Bertotti, 1998), where � is the gyromagnetic ratio, � is the

damping constant and the dot denotes the first-order time

derivative [see our numerical study in the accompanying

paper (Adams et al., 2022) for further details]. Shown is the

vector norm of the w(n) function scaled to its maximum value.

From Fig. 2 it is seen that our analytical approximation is in

qualitative agreement with the results from the numerical

simulation. The corresponding real-space spin structure m(n)
is displayed in Fig. 3, where the surface spin disorder becomes

clearly visible.

It is also instructive to compare our solution (21) with that

obtained using the Green’s function approach (Garanin &

Kachkachi, 2003; Kachkachi, 2007). In particular, for � located
close to the surface, where the maximum spin misalignment

with respect to m0 occurs, the Green’s function method yields

the following approximate expression:

 �ðnÞ ’ � 15ks
32

1� �2�
14

	 

�2g� � VVVðnÞ �m0; ð29Þ

VVVðnÞ ¼ �diag

�2x=�
2 � 1=3

�2y=�
2 � 1=3

�2z=�
2 � 1=3

2
4

3
5: ð30Þ

This expression is also found when (21) is expanded in �� at
the surface of the NM (� = 1).

While the infinite series approach using spherical harmonics

and spherical Bessel functions yields an exact solution of the

Helmholtz equation, the Green’s function approach provides

an approximate explicit expression of  � in terms of the

coefficients ��. Indeed, as was shown by Kachkachi (2007), in

the presence of core anisotropy Green’s function as the kernel

of the Helmholtz equation is only obtained as a perturbative

series in �� . As such, (29) is restricted to small values of ��, i.e.
assuming that the core anisotropy and applied magnetic field

are much smaller than the exchange coupling. This is manifest

in (29) by the presence of the factor 1� �2�=14 which implies

that the contribution of spin misalignment may diverge when

�� is too large (i.e. for a strong field and/or large core aniso-

tropy).

3. Magnetic SANS cross section

The quantity of interest in experimental SANS studies is the

elastic magnetic differential scattering cross section d�M/d�,

which is usually recorded on a two-dimensional position-

sensitive detector. For the most commonly used scattering

geometry in magnetic SANS experiments, where the applied

magnetic field B0 k ez is perpendicular to the wavevector k0 k
ex of the incident neutrons (see Fig. 4), d�M/d� (for un-

polarized neutrons) can be written as (Mühlbauer et al., 2019)

d�M

d�
ðqÞ ¼ 8�3

V
b2H

� eMMx

��� ���2þ eMMy

��� ���2cos2 �q þ eMMz

��� ���2sin2 �q
� eMMy

eMM�
z þ eMM�

y
eMMz

� �
sin �q cos �q

�
; ð31Þ

where V is the scattering volume and bH = 2.91 � 108 A�1 m�1

is the magnetic scattering length in the small-angle regime

(the atomic magnetic form factor is approximated by 1,
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Figure 3
The real-space spin structure in the �x�z plane computed using (4) and
(21). Parameters are the same as in Fig. 2. The external field B0 ’ 266 mT
is applied in the �x�z plane and inclined by an angle of � = 40� relative to
the �z axis [compare with Garanin & Kachkachi (2003)].

Figure 4
A sketch of the perpendicular scattering geometry (B0 ? k0). The
scattering vector q corresponds to the difference between the
wavevectors of the incident (k0) and scattered (k1) neutrons. The angle
�q specifies the orientation of q on the detector. In the small-angle
approximation, the component of q along k0 is neglected.
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since we are dealing with forward scattering). eMMðqÞ =
½eMMxðqÞ; eMMyðqÞ; eMMzðqÞ� represents the magnetization vector

field M(r) in Fourier space, �q denotes the angle between the

scattering vector q and B0 (not to be confused with the polar

angle � defined above), and the asterisk * stands for the

complex conjugate. Note that in the perpendicular scattering

geometry the Fourier components are evaluated in the plane

qx = 0.

The Fourier transform of the three-dimensional magneti-

zation vector field (with a tilde above the symbol) is defined as

eMMðqÞ ¼ 1

ð2�Þ3=2
Z
V

MðrÞ exp ð�iq � rÞ d3r; ð32Þ

MðrÞ ¼ 1

ð2�Þ3=2
Z
V

eMMðqÞ exp ðiq � rÞ d3q: ð33Þ

For subsequent calculations, we introduce the following

dimensionless quantities:

t ¼ qR; fMMMMMM ¼ ð2�Þ3=2
4�R3M0

eMM; ð34Þ

and we express the dimensionless scattering vector in sphe-

rical coordinates as

t ¼ � sin �q cos�q; � sin �q sin�q; � cos �q
� �

: ð35Þ
Next, in (32) we use the following first-order approximation

for the real-space magnetization vector m(n) [see (5) and (7)]:

mðnÞ ¼ m0 þ
P2
�¼1

g� �ðnÞ: ð36Þ

As shown in Appendix C, the final expression for the Fourier

transform of the magnetization is then given by

fMMMMMMðtÞ ¼ j1ð�Þ
�

m0

þ P2
�¼1

g�
P1
	¼1

P	

¼0

ð�1Þ	a�	
��	 ð�ÞP2

2	 ðcos �qÞ cosð2
�qÞ;

ð37Þ
where

��	 ð�Þ ¼ � �j2	�1ð�Þ�	ð��Þ � ��@	ð��Þ j2	ð�Þ
�2 þ �2�

; ð38Þ

@	ð�Þ ¼
�1=2

2

X1
s¼0

ð�1Þ	ð�=2Þ2ðsþ	Þ�1

s!�ð2	þ sþ 1=2Þ ð39Þ

and �	(��) is given by (17). The zero-order term / j1(�)/� in

(37) represents the form factor of a homogeneously magne-

tized sphere (Michels, 2021). In the limiting case of an infinite

applied magnetic field, which is equivalent to the limit ��!1,

the additional terms [second line in (37)] vanish [compare with

(25)] and the spherical form factor remains. On the other

hand, if ks = 0, the additional terms also vanish because, from

the physical point of view, the Néel surface anisotropy cancels

and from (18) we know that the coefficients a�	
 are linear in

ks. Taking only the terms with 	 = 1 into account and setting

�q = �/2 (�x = 0), corresponding to the scattering geometry

where the applied magnetic field B0 k ez is perpendicular

to the wavevector k0 k ex of the incident neutrons (Fig. 4), the
expression for fMMMMMMðtÞ can be written as [compare with (21)]

fMMMMMMðtÞ ’ j1ð�Þ
�

m0 �
15ks
32

X2

�¼1

R�ð�Þ g� � VVVð�q; �=2Þ �m0

� �
g�;

ð40Þ
where the radial function is

R�ð�Þ ¼
�j1ð�Þ
�2 þ �2�

�1ð��Þ
���

0
1ð��Þ

� j2ð�Þ
�2 þ �2�

@1ð��Þ
�0

1ð��Þ
: ð41Þ

R�ð�Þ can be approximated for small �� and, when only terms

up to s = 1 in the infinite series (17) and (39) are kept,

R�ð�Þ ¼
1

4

�j1ð�Þ
�2 þ �2�

�2� þ 14

�2� þ 7
� 7

4

j2ð�Þ
�2 þ �2�

�2� þ 10

�2� þ 7
: ð42Þ

For small � values, one finds the limit

lim
�!0

R�ð�Þ ¼ 0; ð43Þ

which is consistent withR
V

wðrÞ d3r ¼ 0: ð44Þ

This can be seen by inspecting the definition of the Fourier

transform in (32). Note that for q!0 the Fourier transform is

proportional to the average of the magnetization vector field

M and the maximum of this average is given by the homo-

geneous magnetization state. Using this result, the �!0 limit

for the first-order approximation inw of the Fourier transform

of the magnetization yields

lim
�!0

fMMMMMMð�; �q; �qÞ ¼ 1
3 m0: ð45Þ

Beyond the linear approximation in w, a non-vanishing term

appears in fMMMMMM in the limit �!0, which reduces the Fourier

components relative to the homogeneous magnetization state.

In the second order in w, the result is [compare (5)]

lim
�!0

fMMMMMMð�; �q; �qÞ ¼ 1
3 � 1

2

R
V

kwðnÞk2 d3�
� �

m0: ð46Þ

Using (34) and

d�M

d�
¼ 16�2R6M2

0b
2
H

V
SM; ð47Þ

the dimensionless two-dimensional magnetic SANS cross

section SMð�; �qÞ can be straightforwardly obtained as

[compare (31)]

SMð�; �qÞ ¼ jfMMxj2 þ jfMMyj2 cos2 �q þ jfMMzj2 sin2 �q
� fMMy

fMM�
z þ fMM�

y
fMMz

� �
sin �q cos �q: ð48Þ

In the limit ks!0, the resulting cross section from (37) is
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lim
ks!0

SMð�; �qÞ ¼
j1ð�Þ
�

� �2

m2
0;x þm2

0;y cos
2 �q þm2

0;z sin
2 �q



� 2m0;ym0;z sin �q cos �q

�
: ð49Þ

Relation (49) nicely demonstrates that, depending on the

orientation of the uniformly magnetized particle, different

angular anisotropies become visible on the detector. For m0 k
ex (i.e. m0y =m0z = 0) the scattering pattern is isotropic, while it

exhibits a cos2 �q (sin
2 �q) type shape when m0 k ey (m0 k ez).

Fig. 5 shows SMð�; �qÞ along with the contribution of the

individual Fourier components to (48). The upper row in

Fig. 5 presents the results taking into account only the zero-

order term [ j1(�)/�]m0 from (40), while in the lower row the

second-order term (	 = 1) is additionally included. Since the

zero-order term represents the case of a homogeneously

magnetized NM, this comparison provides useful insights

about the impact of the Néel surface anisotropy on the

magnetic SANS cross section. In the case of a uniformly

magnetized NM (upper row) the Fourier components jfMMxj2,
jfMMyj2 and jfMMzj2 are isotropic (rotational symmetry), while

including the second-order terms (lower row) leads to aniso-

tropic behaviour of the transverse components jfMMxj2 and

jfMMyj2. The cross term (CT) averages to zero for both situa-

tions and the dominant contribution to the magnetic SANS

cross section (for the parameters chosen in Fig. 5) is given by

the jfMMzj2 component. Therefore, it may be concluded that the

impact of the Néel surface anisotropy on SMð�; �qÞ is relatively
small. By comparing the SMð�; �qÞ from the upper and lower

rows, it is seen that by including the Néel surface anisotropy

the circular symmetry of the zeros of SM (deep-blue colours) is

broken. This feature becomes more clearly visible by

analyzing the azimuthal average of SMð�; �qÞ, which is readily

computed as

Ið�Þ ¼ 1

2�

Z2�
0

SMð�; �qÞ d�q: ð50Þ

In the limit ks!0, the azimuthal average corresponding to

(49) is

lim
ks!0

Ið�Þ ¼ j1ð�Þ
�

� �2km0k2 þ ðex �m0Þ2
2

: ð51Þ

We have also calculated the pair-distance distribution function

Pð�Þ ¼ �2
R1
0

Ið�Þ j0ð��Þ �2 d� ð52Þ

and the correlation function

Cð�Þ ¼ Pð�Þ=�2: ð53Þ
In the limit ks!0, the pair-distance distribution and the

correlation function corresponding to (51) are

lim
ks!0

Pð�Þ ¼ ��2

6
1� 3�

4
þ �3

16

	 
 km0k2 þ ðex �m0Þ2
2

; ð54Þ

lim
ks!0

Cð�Þ ¼ �

6
1� 3�

4
þ �3

16

	 
 km0k2 þ ðex �m0Þ2
2

: ð55Þ

These functions are displayed graphically in Fig. 6. Due to the

surface-anisotropy-induced spin disorder, the form-factor

extrema of Ið�Þ [Fig. 6(a)] are damped and shifted slightly to

larger q values [i.e. smaller structures; compare the first

minimum of Ið�Þ for ks = 3]. Moreover, as already observed in

numerical micromagnetic continuum simulations (Vivas et al.,

2017, 2020), the oscillations are damped for the case of surface

spin disorder, which mimics the effect of a particle-size

distribution or of instrumental resolution. In agreement with
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Figure 5
Results for the two-dimensional Fourier components jfMMxj2, jfMMyj2, jfMMzj2, CT = �ðfMMy

fMM�
z þ fMM�

y
fMMzÞ and for the total magnetic SANS cross section

SMð�; �qÞ [(48)] using expression (40). The upper row shows the results taking into account only the zero-order term in (40), which corresponds to the
case of a homogeneously magnetized particle. The lower row displays the results when the second-order term (	 = 1) in (40) is taken into account. The
parameters are eA = ez , b0 = 0.1ez (B0 ’ 48 mT), kc = 0.1, ks = 3 and m0 = [sin�cos�, sin� sin�, cos�]. Note that �y and �z denote the dimensionless
components of the scattering vector [compare equation (34)]. Since the Néel surface anisotropy effectively has a cubic symmetry (see Fig. 1), we average
SM over the angles � = (45�, 135�, 225�, 315�) and � = 20�. A logarithmic colour scale is used.
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this observation is the finding that the maximum of the Pð�Þ
function [Fig. 6(b)] appears at smaller distances � than in the

homogeneous case. Likewise, due to spin disorder, the Cð�Þ
function [Fig. 6(c)] exhibits a larger amplitude (Mettus &

Michels, 2015).

To analyze the role of the surface anisotropy more quan-

titatively, we have computed the following quantities, which

describe the deviation of the one-dimensional SANS cross

section and of the pair-distance distribution function from the

homogeneous particle case:

�IðksÞ ¼
R1
0 jIðks ¼ 0; �Þ � Iðks; �Þj d�R1

0 jIðks ¼ 0; �Þj d� ; ð56Þ

�PðksÞ ¼
R 2

0 jPðks ¼ 0; �Þ � Pðks; �Þj d�R 2

0 jPðks ¼ 0; �Þj d�
: ð57Þ

Fig. 6(d) depicts both �IðksÞ and �PðksÞ as a function of ks.

The difference is only of the order of a few percent, which

suggests that the effect of surface anisotropy on the SANS

observables is relatively weak within the present analytical

approximation: see our accompanying numerical work

(Adams et al., 2022), which takes into account the full non-

linearity of the micromagnetic equations. However, this is only

true for the magnetic interactions considered here. Taking into

account the anisotropic and long-range dipole–dipole inter-

action and the asymmetric Dzyaloshinskii–Moriya interaction

will very likely result in more inhomogeneous spin structures

and in larger deviations from the macrospin model (Vivas et

al., 2017, 2020; Pathak & Hertel, 2021). Likewise, for NMs of

elongated shapes, the surface anisotropy renders an additional

first-order contribution to the effective energy (Garanin &

Kachkachi, 2003), in addition to the second-order cubic

contribution discussed above. This new shape-induced

contribution could also lead to an enhancement of the spin

misalignment. The analytical calculations presented here

provide a general framework for future studies of more

complicated (anisotropic) magnetic interactions. The

approach can be straightforwardly adapted to other particle

shapes such as a circular planar disc.

4. Conclusions

We have analytically computed the magnetization distribution

and the ensuing magnetic SANS cross section of a spherical

nanoparticle. Our micromagnetic Hamiltonian takes into

account the isotropic exchange interaction, an external

magnetic field, a uniaxial anisotropy for the particle’s core and

Néel anisotropy on its boundary. The resulting Helmholtz

equation has been solved by expanding the real-space

magnetization in terms of spherical Bessel functions and

spherical harmonics. The central results are the infinite series

(16) and its second-order expansion (21) for the real-space

magnetization, and the corresponding Fourier transforms (37)

and (40). Using these expressions, the two-dimensional

magnetic SANS cross section SMð�; �qÞ, the azimuthally

averaged SANS signal Ið�Þ, and the correlation functions

Pð�Þ and Cð�Þ have been obtained and compared with the case

of a homogeneous spin configuration (uniform magnetization

vector field). The signature of Néel surface anisotropy (of

constant ks) has been identified in all of these functions.

However, its effect is relatively small, even for large values of

ks. Taking into account the magnetodipolar and/or the

Dzyaloshinskii–Moriya interaction, or shape asymmetry, will

probably result in configurations with stronger spin misalign-

ment (e.g. in vortex-type textures or skyrmions) and thereby in

more prominent signatures in the SANS cross section and

correlation function. These interactions are beyond the scope

of the current analytical approach and will be considered in

our future (numerical) work.

APPENDIX A
Solution of the boundary value problem of the
Helmholtz equation

The coefficients c
�
‘m in the fundamental solution (15) of the

Helmholtz equation (9) must be determined such that the

Neumann boundary condition (10) is satisfied. For this

purpose, we use the method of least squares, where we make

use of the orthogonality properties of the spherical harmonics

Y‘m(�, �). The normal derivative of (15) at the surface of the

NM (� = 1) is
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Figure 6
Results for (a) the azimuthally averaged SANS cross section Ið�Þ, (b) the
pair-distance distribution function Pð�Þ, (c) the correlation function Cð�Þ,
and (d) the quantities �IðksÞ [(56)] and �PðksÞ [(57)] (B0 ffi 48 mT). For
the homogeneous case [blue curves in panels (a)–(c)] the surface
anisotropy is set to ks = 0, and for the inhomogeneous case [red curves in
panels (a)–(c)] we use the same parameters as in Fig. 5. The functional
dependence of Ið�Þ, Pð�Þ and Cð�Þ for the uniformly magnetized particle
all correspond to the analytically well known cases, i.e. (51), (54) and (55).
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d �
d�

����
�¼1

¼
X1
‘¼0

X‘
m¼�‘

c
�
‘m j‘ði���Þ
� �0

�¼1
Y‘mð�; �Þ; ð58Þ

where

j‘ði���Þ
� �0

�¼1
¼ d

d�
j‘ði���Þ

����
�¼1

: ð59Þ

Our goal is now to minimize the following error functional

with respect to the coefficients c
�
‘m:

" c
�
‘m

� � ¼ R2�
0

R�
0

P
�2fx;y;zg

���jn�j
�����

� P1
‘¼0

P‘
m¼�‘

c
�
‘m j‘ði���Þ
� �0

�¼1
Y‘mð�; �Þ

����
2

sin � d� d�: ð60Þ

The minimum of this error functional is found from the

condition that the partial derivatives of "½c�‘m� with respect to

ðc�ijÞ� vanish,
@"½c�‘m�
@ðc�ijÞ�

¼ 0; ð61Þ

where * denotes the complex conjugate. Using the ortho-

gonality relation (62) [p. 378 (14.30.8) of Olver et al. (2010)]

and by defining the integral I�ij by (63),

R2�
0

R�
0

Y‘mð�; �ÞY�
ij ð�; �Þ sin � d� d� ¼ 
‘i
mj; ð62Þ

R2�
0

R�
0

Y�
ij ð�; �Þ jn�j sin � d� d� ¼ I�ij ; ð63Þ

the solution of (61) can be written as

c
�
ij ¼

1

½jjði���Þ�0�¼1

X
�2fx;y;zg

���I
�
ij : ð64Þ

Alternatively, again using the indices ‘ and m, expressing the

coefficient ��� as in (13) and using the matrix vector product,

the coefficients c
�
‘m can be more explicitly written as

c
�
‘m ¼ ksg� � diag Ix‘m; I

y
‘m; I

z
‘m

� � �m0

½j‘ði���Þ�0�¼1

: ð65Þ

For some low orders of ‘ and m, the exact solutions of the

integrals I�‘m are presented in Appendix B.

From (65) several conclusions can be drawn. First, the zero-

order term (‘ = m = 0) in (15) vanishes, which can easily be

shown by rewriting the coefficient c�00 as

c
�
00 ¼

ksð�1=2Þðg� �m0Þ
½j0ði���Þ�0�¼1

¼ 0; ð66Þ

and this is due to the orthogonality ofm0 and g� with � 2 {1, 2}

[see (6)]. Moreover, we see that

 �ð� ¼ 0; �; �Þ ¼ 0; ð67Þ
which is a consequence of the behaviour of the spherical

Bessel functions of the first kind at the origin. Since the j‘ with

‘� 1 all vanish at the origin � = 0, this implies that the total  �
also vanishes at the origin. Note that j0(0) = 1 but does not

contribute to  � since c
�
00 = 0. From the physical point of view

this makes sense, since the spin misalignment is caused by the

Néel surface anisotropy and thus, for symmetry reasons, there

is no spin disorder at the centre of the spherical NM; the

highest misalignment is found at its surface. Secondly, in

Table 1 in Appendix B it is seen that the coefficients I �‘;m
vanish for odd ‘ or m and that I �‘;m = I �‘;�m, so that the

expansion coefficients also exhibit this symmetry,

c
�
‘;m ¼ c

�
‘;�m: ð68Þ

Taking these properties into account, one can express the

solution (15) more conveniently in terms of the associated

Legendre polynomials Pm
‘ ðcos �Þ with ‘ = 2	 and m = 2
 {note

that we use the convention that Y‘mð�; �Þ = N‘mP
m
‘ ðcos �Þ �

exp ðim�Þ [p. 378 (14.30.1) of Olver et al. (2010)]},

 � ¼
P1
	¼1

P	

¼0

a�	
�	ð���ÞP2

2	 ðcos �Þ cosð2
�Þ; ð69Þ

where �	(�) is defined in (17) and a�	
 in (18).

The infinite series in (18) is a consequence of the relation

between the spherical Bessel functions of the first kind and the

ordinary Bessel functions of the first kind [p. 262 (10.47.3) of

Olver et al. (2010)],

jlð�Þ ¼
�

2�

� �1=2

Jlþ1=2ð�Þ; ð70Þ

and the well known series representation [p. 262 (10.47.3) of

Olver et al. (2010)]

Jlð�Þ ¼
X1
s¼0

ð�1Þsð�=2Þ2sþl

s!�ðl þ sþ 1Þ : ð71Þ

APPENDIX B
Integral coefficients

The integrals I �‘m can be simplified, since both n� and Y
�
‘mð�; �Þ

are separable functions in � and �. By rewriting the spherical

harmonics in terms of complex exponentials and associated

Legendre polynomials, and by using the definition of the

Cartesian components of the surface normal vector n from

(3) {note that we use the convention that Y‘mð�; �Þ =
N‘mP

m
‘ ðcos �Þ exp ðim�Þ [p. 378 (14.30.1) of Olver et al.

(2010)]}, the integrals are expressed as follows:

Ix‘m ¼ N‘mK
ð1Þ
‘mU

ð1Þ
m ; ð72Þ

I
y
‘m ¼ N‘mK

ð1Þ
‘mU

ð2Þ
m ; ð73Þ

Iz‘m ¼ N‘mK
ð2Þ
‘mU

ð3Þ
m ; ð74Þ

where

K
ð1Þ
‘m ¼ R�

0

Pm
‘ ðcos �Þ jsin �j sin � d�; ð75Þ

research papers

J. Appl. Cryst. (2022). 55, 1475–1487 Michael P. Adams et al. 	 Magnetic neutron scattering: analytical treatment 1483
electronic reprint



K
ð2Þ
‘m ¼ R�

0

Pm
‘ ðcos �Þ jcos �j sin � d�; ð76Þ

Uð1Þ
m ¼

Z2�
0

exp ð�im�Þ jcos �j d� ¼ ð�1Þjmj=2 2½1þ ð�1Þjmj�
1�m2 þ 
jmj;1

;

ð77Þ

Uð2Þ
m ¼

Z2�
0

exp ð�im�Þ jsin�j d� ¼ 2½1þ ð�1Þjmj�
1�m2 þ 
jmj;1

; ð78Þ

Uð3Þ
m ¼ R2�

0

exp ð�im�Þ d� ¼ 2�
0;m; ð79Þ

N‘m ¼ 2‘þ 1

4�

ð‘�mÞ!
ð‘þmÞ!

� �1=2

: ð80Þ

The integrals Uð1Þ
m , Uð2Þ

m and Uð3Þ
m are solvable straightforwardly

using Euler’s formula for the complex exponential and by

splitting the region of integration according to the absolute

values of the trigonometric functions. In the denominator of

Uð1Þ
m and Uð2Þ

m we have included the Kronecker delta 
|m|, 1 to

take account of the cases m = 
1. It is common to express the

integrals K
ð1Þ
‘m and K

ð2Þ
‘m by the substitution x = cos� (dx =

�sin� d�),

K
ð1Þ
‘m ¼ R1

�1

Pm
‘ ðxÞ 1� x2ð Þ1=2 dx; ð81Þ

K
ð2Þ
‘m ¼ R1

�1

Pm
‘ ðxÞ jxj dx: ð82Þ

Using Uð3Þ
m ¼ 2�
0;m , we need only compute K

ð2Þ
‘;0 such that the

associated Legendre polynomials in K
ð2Þ
‘;m are reduced to the

Legendre polynomials with one index only [p. 352 of Olver et

al. (2010)]. By considering the symmetry properties of the

Legendre polynomials it becomes clear that the integral must

vanish for odd ‘ and can be simplified for even ‘ in the

following way:

K
ð2Þ
‘;0 ¼ ½1þ ð�1Þ‘� R1

0

P‘ðxÞ x dx: ð83Þ

The closed form of K
ð2Þ
‘;0 is then found in terms of the Gamma

function [p. 771 (7.126.1) of Gradshteyn & Ryzhik (2007)],

K
ð2Þ
‘;0 ¼

ð�1=2Þ ½1þ ð�1Þ‘�
4�ð3=2� ‘=2Þ�ð‘=2þ 2Þ : ð84Þ

The overall solution for Iz‘m is then written as

Iz‘m ¼ �½1þ ð�1Þ‘� ð2‘þ 1Þ1=2
4�ð3=2� ‘=2Þ�ð‘=2þ 2Þ 
0;m: ð85Þ

Since we only have to calculate K
ð1Þ
‘m for even m [because Uð1Þ

m

and Uð2Þ
m include the term 1 + (�1)|m|], we may use the index

m = 2
 and, by exploiting the parity of the associated

Legendre polynomials Pm
‘ ð�xÞ = ð�1Þ‘þm

Pm
‘ ðxÞ, we find
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Table 1
Values of the integrals (19) for some small values of ‘ and m.

Ix‘m ¼ R 2�

0

R �
0 Y�

‘mð�; �Þj sin � cos�j sin � d� d� ¼ ð�1Þjmj=2

� 2½1þ ð�1Þjmj� ½1þ ð�1Þ‘�
1�m2 þ 
jmj;1

2‘þ 1

4�

ð‘�mÞ!
ð‘þmÞ!

� �1=2Z 1

0

Pm
‘ ðxÞ ð1� x2Þ1=2 dx

m

‘ 0 
 1 
 2 
 3 
 4 
 5 
 6

0 �1/2

1 0 0

2 �ð5�Þ1=2
8

0 1

8

15�

2

	 
1=2

3 0 0 0 0

4 � 3ð�1=2Þ
64

0 1

32

5�

2

	 
1=2

0 � 1

64

35�

2

	 
1=2

5 0 0 0 0 0 0

6 � 5ð13�Þ1=2
1024

0 ð1365�Þ1=2
2048

0 � 3

1024

91�

2

	 
1=2

0 ð3003�Þ1=2
2048

I
y
‘m ¼ R 2�

0

R �
0 Y�

‘mð�; �Þj sin � sin�j sin � d� d�

¼ 2½1þ ð�1Þjmj� ½1þ ð�1Þ‘�
1�m2 þ 
jmj;1

2‘þ 1

4�

ð‘�mÞ!
ð‘þmÞ!

� �1=2Z 1

0

Pm
‘ ðxÞ ð1� x2Þ1=2 dx

m

‘ 0 
 1 
 2 
 3 
 4 
 5 
 6

0 �1/2

1 0 0

2 � ð5�Þ1=2
8

0 � 1

8

15�

2

	 
1=2

3 0 0 0 0

4 � 3ð�1=2Þ
64

0 � 1

32

5�

2

	 
1=2

0 � 1

64

35�

2

	 
1=2

5 0 0 0 0 0 0

6 � 5ð13�Þ1=2
1024

0 �ð1365�Þ1=2
2048

0 � 3

1024

91�

2

	 
1=2

0 �ð3003�Þ1=2
2048

Iz‘m ¼
Z 2�

0

Z �

0

Y�
‘mð�; �Þj cos �j sin � d� d� ¼ �½1þ ð�1Þ‘�ð2‘þ 1Þ1=2

4�ð3=2� ‘=2Þ�ð‘=2þ 2Þ 
m;0

m

‘ 0 
 1 
 2 
 3 
 4 
 5 
 6

0 �1/2

1 0 0

2 ð5�Þ1=2
4

0 0

3 0 0 0 0

4 ��
1=2

8
0 0 0 0

5 0 0 0 0 0 0

6 ð13�Þ1=2
64

0 0 0 0 0 0
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K
ð1Þ
‘;2
 ¼ ½1þ ð�1Þ‘� R1

0

P2

‘ ðxÞ 1� x2ð Þ1=2 dx: ð86Þ

From these results it is seen that the integrals I �‘m with � 2
{x, y, z} vanish for odd ‘ and m [note that in (86) this is only

the case form = 2
]. For the remaining integrals K
ð1Þ
2	;2
 in (86),

where ‘ = 2	, we do not give an expression in closed form.

However, one must exist in terms of the Gamma function or

the Beta function, since [p. 324 (3.251.2) of Gradshteyn &

Ryzhik (2007)]

Z1
0

xs 1� x2

 �1=2

dx ¼ 1

2
B

sþ 1

2
;
3

2

	 

; ð87Þ

where B(�, �) is the Beta function (Euler integral), and the

associated Legendre functions P2

2	 of even order and degree

are true polynomials, as seen for example from the related

Rodrigues formula [p. 360 (14.7.14) of Olver et al. (2010)]. We

used Mathematica (Wolfram Inc.) to determine the integrals

up to the sixth order in ‘ (see Table 1).

APPENDIX C
Derivation of the Fourier transform of the
magnetization

The Fourier transform of the magnetization vector field M(r)

is written as

eMMðqÞ ¼ 1

ð2�Þ3=2
Z
V

MðrÞ exp ð�iq � rÞ d3r: ð88Þ

In the following, we will use dimensionless quantities. For this

purpose, we define the dimensionless scattering vector t = qR,

where R is the radius of the nanomagnet, the dimensionless

position vector n = r/R and the dimensionless magnetization

vector m = M/M0 , where M0 is the saturation magnetization.

Substituting in (88) results in

eMMðtÞ ¼ R3M0

ð2�Þ3=2
Z
V

mðnÞ exp ð�it � nÞ d3�: ð89Þ

The dimensionless Fourier transform fMMMMMM is then defined as

fMMMMMMðtÞ ¼ 1

4�

Z
V

mðnÞ exp ð�it � nÞ d3�; ð90Þ

with

eMM ¼ 4�R3M0

ð2�Þ3=2
fMMMMMM: ð91Þ

The next step consists of calculating the Fourier integral of the

first-order approximation (36) of the magnetization vector m.

Since (36) is formulated in dimensionless spherical coordi-

nates �, �, �, it is convenient to express the scattering vector t
in spherical coordinates as well,

n ¼ � sin � cos�; � sin � sin�; � cos �½ �; ð92Þ

t ¼ � sin �q cos�q; � sin �q sin�q; � cos �q
� �

; ð93Þ
so that the plane-wave expansion of the complex exponential

can be used (Jackson, 1999),

exp ð�it � nÞ ¼ 4�
P1
k¼0

Pk
n¼�k

ð�iÞkjkð��ÞY�
knð�; �ÞYknð�q; �qÞ:

ð94Þ
The Fourier integral (90) is then expanded into the following

infinite series:

fMMMMMMðtÞ ¼ P1
k¼0

Pk
n¼�k

ð�iÞkM̂MMMMMknð�ÞYknð�q; �qÞ; ð95Þ

where

M̂MMMMMknð�Þ ¼
R2�
0

R�
0

R1
0

mðnÞ jkð��ÞY�
knð�; �Þ �2 sin � d� d� d�: ð96Þ

We now use the infinite series (15) for  � to express the first-

order approximation of the magnetization, which leads to

mðnÞ ¼ m0 þ
P2
�¼1

g�
P1
‘¼0

P‘
m¼�‘

c
�
‘m j‘ði���ÞY‘mð�; �Þ: ð97Þ

Since the integral transform (96) is linear, each term in (97)

can be separately transformed. For the zero-order term, we

obtain

R2�
0

R�
0

R1
0

m0 jkð��ÞY�
knð�; �Þ �2 sin � d� d� d�

¼ ð4�Þ1=2 j1ð�Þ
�

m0
k;0
n;0: ð98Þ

This result is well known to the neutron-scattering community

as the spherical form factor, corresponding to a uniformly

magnetized spherical particle (Michels, 2021). In the second

step, we carry out the integration of the higher-order terms

from (97). The radial and angular parts in the higher-order

terms of (97) are multiplicative, such that the volume integral

(96) is separable into

A
�
‘kð�Þ ¼

R1
0

j‘ði���Þ jkð��Þ �2 d�; ð99Þ

Bkn
‘m ¼ R2�

0

R�
0

Y‘mð�; �ÞY�
knð�; �Þ sin � d� d�: ð100Þ

As an intermediate result, the integral (96) is then rewritten as

M̂MMMMMknð�Þ ¼ ð4�Þ1=2 j1ð�Þ
�

m0
k;0
n;0

þ P2
�¼1

g�
P1
‘¼0

P‘
m¼�‘

c
�
‘mA

�
‘kð�ÞBkn

‘m: ð101Þ

The integral (100) directly corresponds to the orthogonality

relation of the spherical harmonics and thereby we have Bkn
‘m =


‘k
mn [p. 378 (14.30.8) of Olver et al. (2010)]. Due to the term


‘k in Bkn
‘m and since Bkn

‘m and A
�
‘k are multiplicative in (101),

the following spherical Hankel transform results:
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A
�
kkð�Þ ¼

R1
0

jkði���Þ jkð��Þ �2 d�: ð102Þ

In order to calculate these integrals, we replace [using (70)]

the spherical Bessel functions of the first kind jk(�) with the

ordinary Bessel functions of the first kind J�(�). This yields

A
�
kkð�Þ ¼

�

2�

� �1=2 �

2i��

	 
1=2

W
�
k ð�Þ; ð103Þ

where

W
�
k ð�Þ ¼

R1
0

Jkþ1=2ði���Þ Jkþ1=2ð��Þ � d� ð104Þ

is the Hommel integral. The result for the integral W�
k can be

found in the textbook by Gradshteyn & Ryzhik (2007) [p. 664

(6.521.1)] and is written as

W
�
k ð�Þ ¼ � �Jk�1=2ð�Þ Jkþ1=2ði��Þ � i��Jk�1=2ði��Þ Jkþ1=2ð�Þ

�2 þ �2�
:

ð105Þ
Again, upon applying relation (70), we write the solution for

A
�
kkð�Þ more conveniently in terms of spherical Bessel func-

tions of the first kind as

A
�
kkð�Þ ¼ � �jk�1ð�Þ jkði��Þ � i��jk�1ði��Þ jkð�Þ

�2 þ �2�
: ð106Þ

Now that the integrals have been obtained, we have to

substitute (101) in (95). The term on the first line of (101) only

accounts for k = 0 and n = 0 in (95). Therefore, the contri-

bution of this term to fMMMMMM is [j1(�)/�]m0, because Y00(�, �) =
1/(4�)1/2. Since Bkn

‘m ¼ 
‘k
mn , the final result is

fMMMMMMðtÞ ¼ j1ð�Þ
�

m0 þ
X2

�¼1

g�
X1
k¼0

Xk
n¼�k

ð�iÞkc�knA�
kkð�ÞYknð�q; �qÞ:

ð107Þ
Using the properties of the coefficients c

�
kn studied in

Appendix A, we reformulate (107) in terms of the associated

Legendre polynomials, the indices k = 2	 and n = 2
, and the

coefficients a�	
:

fMMMMMMðtÞ ¼ j1ð�Þ
�

m0

þ P2
�¼1

g�
P1
	¼1

P	

¼0

ð�1Þ	a�	
��	 ð�ÞP2

2	 ðcos �qÞ cosð2
�qÞ;

ð108Þ
where the radial function is given by

��	 ð�Þ ¼ � �j2	�1ð�Þ j2	ði��Þ � i��j2	�1ði��Þ j2	ð�Þ
�2 þ �2�

: ð109Þ

Using once again expression (70) and the well known series

(71) for the Bessel functions of the first kind, we redefine the

spherical Bessel functions of imaginary arguments [as they

appear in (109)] as

�	ð�Þ ¼ j2	ði�Þ ¼
�1=2

2

X1
s¼0

ð�1Þ	ð�=2Þ2ðsþ	Þ
s!�ð2	þ sþ 3=2Þ ; ð110Þ

@	ð�Þ ¼ ij2	�1ði�Þ ¼
�1=2

2

X1
s¼0

ð�1Þ	ð�=2Þ2ðsþ	Þ�1

s!�ð2	þ sþ 1=2Þ ; ð111Þ

such that it becomes clear that fMMMMMMðtÞ is a purely real-valued

function. The radial function is then rewritten as

��	 ð�Þ ¼ � �j2	�1ð�Þ�	ð��Þ � ��@	ð��Þ j2	ð�Þ
�2 þ �2�

: ð112Þ

By comparing this result with (102), we find the following pair

of spherical Hankel transforms,

��	 ð�Þ ¼
R1
0

�	ð���Þ j	ð��Þ �2 d�: ð113Þ

By comparing the result of (108) with (16) it becomes clear

that the angular part is (due to the orthogonality relation of

the spherical harmonics) shape invariant under Fourier

transformation, while the spherical Hankel transform (113) of

the radial function �	(���) remains.
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