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The magnetization profile and the related magnetic small-angle neutron
scattering cross section of a single spherical nanoparticle with Néel surface
anisotropy are analytically investigated. A Hamiltonian is employed that
comprises the isotropic exchange interaction, an external magnetic field, a
uniaxial magnetocrystalline anisotropy in the core of the particle and the Néel
anisotropy at the surface. Using a perturbation approach, the determination of
the magnetization profile can be reduced to a Helmholtz equation with
Neumann boundary condition, whose solution is represented by an infinite
series in terms of spherical harmonics and spherical Bessel functions. From the
resulting infinite series expansion, the Fourier transform, which is algebraically
related to the magnetic small-angle neutron scattering cross section, is
analytically calculated. The approximate analytical solution for the spin
structure is compared with the numerical solution using the Landau-Lifshitz
equation, which accounts for the full nonlinearity of the problem. The signature
of the Néel surface anisotropy can be identified in the magnetic neutron
scattering observables, but its effect is relatively small, even for large values of
the surface anisotropy constant.

1. Introduction

Magnetic small-angle neutron scattering (SANS) is a powerful
technique for investigating spin structures on the mesoscopic
length scale (~1-100 nm) and inside the volume of magnetic
materials (Miihlbauer er al., 2019; Michels, 2021). Recent
SANS studies of magnetic nanoparticles, in particular
employing spin-polarized neutrons, demonstrate that their
spin textures are highly complex and exhibit a variety of
nonuniform, canted or core—shell-type configurations [see e.g.
Disch et al. (2012), Krycka et al. (2014), Hasz et al. (2014),
Giinther et al. (2014), Maurer et al. (2014), Dennis et al. (2015),
Grutter et al. (2017), Oberdick et al. (2018), Ijiri et al. (2019),
Bender et al. (2019), Bersweiler et al. (2019), Zakutna et al.
(2020), Honecker et al. (2022) and references therein]. Surface
anisotropy, vacancies or the presence of antiphase boundaries
are generally considered to be at the origin of spin disorder in
nanoparticles (Berger et al., 2008; Wetterskog et al., 2013;
Nedelkoski et al., 2017; Kohler et al., 2021a; Batlle et al., 2022).
Magnetic SANS data analysis largely relies on structural form-
factor models for the cross section, borrowed from nuclear
SANS, which do not properly account for the existing spin
inhomogeneity inside magnetic nanoparticles or nanomagnets
(NMs).
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Progress in magnetic SANS theory (Honecker & Michels,
2013; Michels et al., 2014; Mettus & Michels, 2015; Erokhin et
al., 2015; Metlov & Michels, 2015, 2016; Michels et al., 2016,
2019; Mistonov et al., 2019; Zaporozhets et al., 2022) strongly
suggests that, for the analysis of experimental magnetic SANS
data, the spatial nanometre-scale variation of the orientation
and magnitude of the magnetization vector field must be taken
into account and macrospin-based models — assuming a
uniform magnetization — are not adequate. The starting point
for a proper analysis of the scattering problem is a micro-
magnetic continuum expression for the magnetic energy of the
system. In the static case, this then leads to Brown’s equations
(Brown, 1963), a set of nonlinear partial differential equations
for the magnetization along with complex boundary condi-
tions on the surface of the magnet. From these equations the
Fourier image and the magnetic SANS cross section may be
obtained.

In this paper, we present an analytical treatment of the
magnetic SANS cross section of a spherical NM with Néel
surface anisotropy (Néel, 1954). This particular form of
anisotropy arises because in an NM a significant fraction of
atoms belong to the surface (with no neighbours on one side),
and their magnetic properties such as exchange and aniso-
tropy can be strongly modified relative to the bulk atoms.

The manuscript is organized as follows. In Section 2, we
calculate the real-space spin structure of a spherical NM using
classical micromagnetic theory within the second-order
perturbation approach. In Section 3, we compute the three-
dimensional Fourier transform of the real-space spin structure,
which directly yields the magnetic neutron scattering cross
section and the pair-distance distribution function. The
analytical results are benchmarked by comparing them with
numerical finite difference simulations using the Landau-
Lifshitz equation of motion. Finally, Section 4 summarizes the
main findings of this study.

We also make reference to our accompanying numerical
study (Adams et al, 2022) where, in contrast to the present
analytical work, the full nonlinearity of the problem is
considered.

2. Micromagnetic theory

In the static micromagnetic approach (Brown, 1963), the
magnetic configuration of a system is described by the
continuous magnetization vector field M(r), which has a
constant magnitude |[M(r)|| = M,. The saturation magnetiza-
tion M, is only a function of temperature. The normalized
magnetization vector field is then defined as

m(r) = M(r)/M, = [m,(x), m,(x), m_(r)], 1

where r denotes the position vector. Our Hamiltonian for the
NM includes the isotropic exchange interaction, the Zeeman
energy, a uniaxial magnetic anisotropy for spins in the core
and Néel surface anisotropy for those on the surface. In the
continuum approach, it reads

H=—-A Z /maAmad3r—M0B0/md3r
aelxy.z)y, %
Z %mana -nd’r
Vv

aefx,y.z

v
— % Z |na{m§ dr, 2)

actry.z) 5,

—Kc/(m-eA)2d3r+A

where A is the exchange stiffness constant, V is the del
operator, A is the Laplace operator, By is a constant applied
magnetic field, K. > 0 denotes the uniaxial core anisotropy
constant, e, is a unit vector specifying the arbitrary core
anisotropy axis and K > 0 is the Néel surface anisotropy
constant (Néel, 1954).

n = [sin 6 cos ¢, sin Osin ¢, cos 6] 3)

is the surface normal to the boundary of the NM, where 6 and
¢ are the usual spherical angles (Garanin & Kachkachi, 2003;
Kachkachi, 2007). In (2), the two surface integrals take into
account the boundary conditions for the magnetization on the
surface (V) of the NM of volume V, which result from the
exchange interaction and the Néel term. The magnetodipolar
energy has been ignored in the calculations because of its
mathematical complexity and since it is expected to be of
minor relevance for smaller-sized NMs [see the recent
atomistic simulations by Kohler ef al. (2021b)].

For small deviations from the homogeneous magnetization
state, a perturbation approach is applicable. Let m, be the
principal unit vector (average direction) associated with m(r)
and let the vector function w(r) L m, describe the spin
misalignment. One can then write

m() = my[1 — ly@ 1] "+ y@), ImEO)=1. &)

Assuming that ¥, ¥,, ¥, <1, the following second-order
Maclaurin expansion in y is used to find an approximate
closed-form solution for m(r):

m(r) = my + y(r) — 3 |y (r)|’m,, )

where m, is taken as a known constant vector in subsequent
calculations. We choose the orthonormal vector base (Garanin
& Kachkachi, 2009),

8o = my,
m, X €,
g = )
[lmy x e, || (6)

(m, -e,)m, —e,

B [[(m, - e,)my — eA||7

2

and the parametrization

p(r) = ¥, (0)g, + ¥,(rg,, 7

and introduce the dimensionless coordinates & = r/R (with & =
€]l = #/R), where r is the position vector,

r = [rsin @ cos ¢, rsin 6sin ¢, rcos 6], (8)

and R denotes the radius of the NM. The minimization of the
Hamiltonian (2) then leads to the well known Helmholtz
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equation with Neumann boundary conditions on the unit
sphere (Kachkachi, 2007; Garanin & Kachkachi, 2003),

[Ac—Gly, =0, Befl2) ©
dy
—t xonal, (10)
ae{x,y,z}
where the constants are defined as
K% =m, - by + 2k (m, - eA)z’ (1)
K3 =m, - by + 2k [2(m, - e,)* — 1], (12)
Xg = ks(m() : ea) (gﬂ . ea)’ (13)
with the dimensionless quantities
R’K RK R*M,
k,=—2=, k,=—2, b,= 'B,. 14
c 2A ) s 2A 0 ZA 0 ( )

The e, (with @ = x, y, z) in (13) denote the unit vectors of the
Cartesian laboratory coordinate frame (in which n and r are
defined). We emphasize that there are only two independent
differential equations for w, which is a consequence of the
constraint |jm(r)|| = 1.

In our graphical representations, we will frequently use the
following values: k. = 0.1 and k¢ = 3.0, which (using R = 5 nm
and A =10"" Jm™") correspond to K. = 80 kJ m > and K, =
12 mJ m~2 (Gradmann, 1986; O’Handley, 2000; Batlle et al.,
2022). For M, = 1.7 x 10° A m™', the relation between by
(dimensionless) and the external field is By = (8/17)by x 1 T.

The fundamental solution of the homogeneous Helmholtz
equation (9) is well known (Weber & Arfken, 2003; Riley et al.,
2006). Its non-singular part can be expressed in spherical
coordinates as an infinite series in terms of spherical harmo-
nics Ye,,(0, ¢) and spherical Bessel functions of the first kind

Jn(iK ),
wﬂ - Z Z Clm]@(“{ﬂg) Y[m(g ¢) (15)

(=0 m=—t
The imaginary number ‘i’ in the argument of the spherical
Bessel function is due to the negative sign in the Helmholtz
equation (9). The expansion coefficients cfm are obtained from
the Neumann boundary condition (10) using the method of
least squares (see Appendix A). From Appendix A it is seen
that the zero-order term with ¢ = 0 vanishes. This physically
makes sense, since the spin misalignment in our model is
caused by the Néel surface anisotropy and thus, for symmetry
reasons, there is no misalignment at the centre of the NM, i.e.
Y& =0, 6, ¢) = 0. By contrast, the largest spin misalignment
is found at the boundary of the NM, i.e. § = 1. Further, we find
that the coefficients cfm vanish in the case of odd ¢ and m,
while they are real valued and even with respect to the index
m, Le. cfm = cfﬁm. Taking these properties into account, one
can conveniently express the solution in terms of the
associated Legendre polynomials P}'(cos#) with ¢ = 2v and
m =2u {note that we use the convention that Y,, (6, ¢) =

Ny, P} (cos 0) exp (im¢) [p. 378 (14.30.1) of Olver ez al. (2010)]},

||
uMg

iavmwﬁs)P%ﬁ(cose)cos(zw), (16)

where we define [compare pp. 624-626 of Weber & Arfken
(2003)]

7T1/2 o ( 1) (T/2)2(v+v)
>

T, (7) = _— 17
O =i =53 ey W)
and the expansion coefficients are given by
als — 2ksN2v.2//. gﬂ : diag[lgulu’ I%}V,Z/L’ IEU,Z;/_] -1m, (18)
148, K5 (k)
with
2r
I, = [ [Y},.(0,¢)n,|sin0dode (19)
00
and
2041 (¢ —m)"?
m = i ( m) (20)
47 (L4 m))
In (18), 8, o is the Kronecker delta function, diag[ . . . ] denotes

a 3 x 3 diagonal matrix and Y,(7) is the first-order derivative
of (17) with respect to 7. For some small values of £ and m, the
exact solutions of the integrals I}, are listed in Table 1 in
Appendix B.

From (18) it is seen that the functions /4 depend linearly on
ks, such that for kg = 0 the magnetization of the NM is
homogeneous (as expected). Since we assume that
Yy, ¥y, ¥, K 1, it is clear that the validity of our solution is
restricted to a finite range 0 < ky < Kk, max. Taking only the
terms with v = 1 into account (corresponding to ¢ = 2), the
remaining (second-order) expression reads

15k, Y ( ﬂs)

V(0. ¢) - my, Ay

where
cos® @ — 1/3 — sin” 6 cos(2¢)
V(0, ¢) = diag| cos®6 — 1/3 + sin* Hcos(2¢) |- (22)
—2(cos? 6 —1/3)
A reasonable approximation for small k4 in (21) is obtained by

taking into account the first two terms in the infinite series (17)
for Y,(t). This results in the following expression [compare

@Dl
Ti(kpE) 1 KpE' + 148
kg Vikg) 4 x5 +7
In the limit x3—0 (small B, and small K,), this expression
reduces to a quadratic function in &,

{ T, () } e
g1 (kcp) 2
The case of an infinite applied magnetic field B, or of a strong

uniaxial core anisotropy [compare (11) and (12)], corresponds
to the limit

(23)

lim

kg—0

(24)
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Figure 1

The normalized effective energy potential of the Néel surface anisotropy
as a function of the Cartesian components of the average magnetization
vector my, = [sinfBcosw, sinpfsine, cosf], computed via numerical
integration of the surface contribution in (2) and using the second-order
approximation (21). Parameters are e = [0, 0, 1], by = 0, k. = 0.1 and k, =
3.0. The minima of the Néel surface contribution are in this case along the
cubic space diagonals m, = [+1, &1, 4+ 1]/(3"%), while the maxima
correspond to the Cartesian axes =+ e,, * e,, + e.. The effective energy
potential has cubic symmetry and is approximately proportional to a
function of the type =~ mj , + mj, 4+ mj _ [see also Garanin & Kachkachi
(2003)].

620

-1
-1

lim :L(Kﬂé) } —0, (25)

=0 (kg (kp)

which recovers the expected result of zero spin misalignment.
Note that the limit xs— 00 is only obtained using all terms of
the infinite series (17).

Of particular interest is the behaviour of 14 as a function of
the radius R of the NM. Inspecting the Hamiltonian (2), it
becomes clear that the surface anisotropy energy scales as R”,
while the uniaxial core anisotropy energy scales as R’. Since
the core and surface anisotropies act in opposite ways (trying
to make the spin structure more homogeneous and more
inhomogeneous, respectively), we see that an increasing radius
R corresponds to a decreasing /4. This behaviour reflects the
NM’s surface-area-to-volume ratio. With (21) it is not possible
to make any prediction in this regard, because until this point
we have not included the principal unit vector m, in the
minimization of the Hamiltonian. Generally, m, is a function
of kg, k., by and e4.

In the special case when the uniaxial anisotropy axis and the
applied magnetic field are both directed parallel to the z axis
(ea =1[0,0,1] and by = [0, 0, by]), the principal unit magneti-
zation vector may be written as

m, = [(1/2"?)sin B, (1/2"/*)sin B, cos B, (26)

where B € [0, arccos(1/3'/2)]. This choice is justified by the
effective cubic symmetry of the Néel anisotropy as shown in

© (@

520

s
1

Figure 2

0 05
€a

A comparison between the numerical solution using the Landau-Lifshitz equation (upper row) and the second-order analytical solution (21) for
@) = [VA(E) + ¥A(E)]Y* (lower row). (a) and (e) show ||y on the boundary surface (£ = 1), while (b)—(d) and (f)—(k) display selected planar cuts in
(4., &, &.) space. The following parameters are used: e5 = e, by = [0.4, 0, 0.4] (By = 266 mT), k. = 0.1, ks = 3.0 and m, = [sin Bcosa, sin Bsina, cos B],

where @ = 0° and g = 40°.
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Fig. 1. This result was already predicted by Garanin &
Kachkachi (2003). The solutions for v, »(&, 0, ¢) [using the
particular my (26)] then read

~ 15kg Yy(k,)

Y 2 o) (Kl)sin20005(2¢)sin B, (27)

. 15k, 1, (k,8)

v, ~ 2 GoT(k) (1 — 3 cos’ 6) sin B cos B. (28)

In Fig. 2, the analytical solution (21) (lower row) is compared
with the numerical solution based on the Landau-Lifshitz
equation m = —ym X B_; —om x (m x B,;) (upper row)
(Bertotti, 1998), where y is the gyromagnetic ratio, « is the
damping constant and the dot denotes the first-order time
derivative [see our numerical study in the accompanying
paper (Adams et al., 2022) for further details]. Shown is the
vector norm of the y(&) function scaled to its maximum value.
From Fig. 2 it is seen that our analytical approximation is in
qualitative agreement with the results from the numerical
simulation. The corresponding real-space spin structure m(&)
is displayed in Fig. 3, where the surface spin disorder becomes
clearly visible.

It is also instructive to compare our solution (21) with that
obtained using the Green’s function approach (Garanin &
Kachkachi, 2003; Kachkachi, 2007). In particular, for & located
close to the surface, where the maximum spin misalignment
with respect to m, occurs, the Green’s function method yields
the following approximate expression:

15k,
32

S LY A VT
AGE 1-2)e8 Vo m. @)

€.

ERRENE R AR RN AR R R R e
ERAERR R R R R AR AN R s
ERARRAR R R NARR A e
ERRARARRARRR MR AR e
ERAERRARRARRA R LR A R e
RBARRARAR AR AR AR R R R e

BARARR AR R RRAR AR A R R e
ERASNRAR R A AR AR R R

>

1
Figure 3
The real-space spin structure in the &£, plane computed using (4) and
(21). Parameters are the same as in Fig. 2. The external field By 2~ 266 mT
is applied in the &£, plane and inclined by an angle of B = 40° relative to
the &, axis [compare with Garanin & Kachkachi (2003)].

£/8—1/3
V(6) = —diag| /& —1/3 |. (30)
£/8—1/3

This expression is also found when (21) is expanded in k4 at
the surface of the NM (& = 1).

While the infinite series approach using spherical harmonics
and spherical Bessel functions yields an exact solution of the
Helmholtz equation, the Green’s function approach provides
an approximate explicit expression of ¥z in terms of the
coefficients k4. Indeed, as was shown by Kachkachi (2007), in
the presence of core anisotropy Green’s function as the kernel
of the Helmholtz equation is only obtained as a perturbative
series in k. As such, (29) is restricted to small values of kg, i.e.
assuming that the core anisotropy and applied magnetic field
are much smaller than the exchange coupling. This is manifest
in (29) by the presence of the factor 1 — K% /14 which implies
that the contribution of spin misalignment may diverge when
kg is too large (i.e. for a strong field and/or large core aniso-

tropy).

3. Magnetic SANS cross section

The quantity of interest in experimental SANS studies is the
elastic magnetic differential scattering cross section dX,/d<2,
which is usually recorded on a two-dimensional position-
sensitive detector. For the most commonly used scattering
geometry in magnetic SANS experiments, where the applied
magnetic field By || e, is perpendicular to the wavevector kq ||
e, of the incident neutrons (see Fig. 4), dX)/d2 (for un-
polarized neutrons) can be written as (Miihlbauer et al., 2019)

8 3

d¥y 5 P ~ 2.,
W(‘l)=7bH ‘Mx +‘My cos 9[1—|-‘MZ sin” 6,

+ ~:1\711) sin 6, cos Oq:|, (31)
where V is the scattering volume and by =2.91 x 10° A™' m™"
is the magnetic scattering length in the small-angle regime
(the atomic magnetic form factor is approximated by 1,

Figure 4

A sketch of the perpendicular scattering geometry (B, L kg). The
scattering vector q corresponds to the difference between the
wavevectors of the incident (ko) and scattered (k;) neutrons. The angle
0, specifies the orientation of q on the detector. In the small-angle
approximation, the component of q along k is neglected.
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since we are dealing with forward scattering). I\N’I(q) =
[M,v(q), M (@), M .(q)] represents the magnetization vector
field M(r) in Fourier space, 6, denotes the angle between the
scattering vector q and B, (not to be confused with the polar
angle 0 defined above), and the asterisk * stands for the
complex conjugate. Note that in the perpendicular scattering
geometry the Fourier components are evaluated in the plane
qx = 0.

The Fourier transform of the three-dimensional magneti-
zation vector field (with a tilde above the symbol) is defined as

~

M(q) = / M(r) exp (—iq - r) d’r, (32)

(2 )3/2

M(r) = f M(q) exp (iq - 1) . (33)

2 )3/2

For subsequent calculations, we introduce the following
dimensionless quantities:

~  Qn

= gR, =""__M, 34
°=1 M= v, 34

and we express the dimensionless scattering vector in sphe-
rical coordinates as
V= [u sing, cos ¢,, vsing, sin@,, vcos Oq]. (35)

Next, in (32) we use the following first-order approximation
for the real-space magnetization vector m(&) [see (5) and (7)]:

m(@) = my + ﬂilgﬁwﬂ(é). (36)

As shown in Appendix C, the final expression for the Fourier
transform of the magnetization is then given by

M( ) = ]1(U) m,
+ 2 gs Z; Z:( 1)"a? pﬂ(U)Pg‘lf(cose ) cos(2/ug, ).
(37
where
. Ufzu—1(U)Tu(K,3) - KﬁNV(Kﬂ)jZU(U)
ph(v) = — 21 . (38)
1/2 o ( 1) (T/2)2(v+v) 1
Zs'l"(2v+s+ 1/2) (39)

and Y, (kp) is given by (17). The zero-order term o j;(v)/v in
(37) represents the form factor of a homogeneously magne-
tized sphere (Michels, 2021). In the limiting case of an infinite
applied magnetic field, which is equivalent to the limit kg— 00,
the additional terms [second line in (37)] vanish [compare with
(25)] and the spherical form factor remains. On the other
hand, if &k, = 0, the additional terms also vanish because, from
the physical point of view, the Néel surface anisotropy cancels

and from (18) we know that the coefficients afu are linear in

k,. Taking only the terms with v = 1 into account and setting
¢, = 7/2 (v, = 0), corresponding to the scattering geometry
where the applied magnetic field B, || e, is perpendicular
to the wavevector kg || e, of the incident neutrons (Fig. 4), the
expression for M(v) can be written as [compare with (21)]

15k,
M) =", - VA0, 7/2) gy,
(40)
where the radial function is
i T i N

U+ 5, 1651 (i) T YRU)
R4(v) can be approximated for small k4 and, when only terms
up to s = 1 in the infinite series (17) and (39) are kept,

1 vj(v) k3+14 7 j(v) k;+10

Ry(v) = - - L @
#(V) 4U2+Kf9 K}zg+7 4U2+K}23 ng+7 (“42)

For small v values, one finds the limit

llgr}) Ry(v) =0, (43)

which is consistent with

[w@)d’r=0. (44)
|4

This can be seen by inspecting the definition of the Fourier
transform in (32). Note that for g—0 the Fourier transform is
proportional to the average of the magnetization vector field
M and the maximum of this average is given by the homo-
geneous magnetization state. Using this result, the v—0 limit
for the first-order approximation in ¥ of the Fourier transform
of the magnetization yields

11;2% .AA;i(U, q’ ¢ )= 3 m,. (45)

Beyond the linear approximation in , a non-vanishing term
appears in M in the limit v—0, which reduces the Fourier
components relative to the homogeneous magnetization state.
In the second order in w, the result is [compare (5)]

lim M(v,6,, ¢,) = [.%—%f ||W(§)|I2d3§]mo- (46)
Vv

Using (34) and

162 ROM2b?

by
Ao _ 1 S (47)

dQ |4

the dimensionless two-dimensional magnetic SANS cross
section Sy(v,6,) can be straightforwardly obtained as
[compare (31)]

SV, 6,) = IM, 2 + M, P cos’ 6, + | M, sin* 6,
- (My./\/lz + MyMZ) sinf, cos 6,. (48)

In the limit k,— 0, the resulting cross section from (37) is

1480  Michael P. Adams et al.
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khE}OSM(U ) _ |:]1( v)

— 2my m, . sinf, cos,). (49)

2 2 2 2 2
:| ( my , + mg , cos Gq—l—mo’z sin Gq

Relation (49) nicely demonstrates that, depending on the
orientation of the uniformly magnetized particle, different
angular anisotropies become visible on the detector. For m, ||
e, (i.e. mg, = my, = 0) the scattering pattern is isotropic, while it
exhibits a cos? o, (sin? 8,) type shape when my || e, (m, | e;).

Fig. 5 shows Sy(v, 6,) along with the contribution of the
individual Fourier components to (48). The upper row in
Fig. 5 presents the results taking into account only the zero-
order term [j;(v)/v]m, from (40), while in the lower row the
second-order term (v = 1) is additionally included. Since the
zero-order term represents the case of a homogeneously
magnetized NM, this comparison provides useful insights
about the impact of the Néel surface anisotropy on the
magnetic SANS cross section. In the case of a uniformly
magnetized NM (upper row) the Fourier components M, %,
|./\/ly|2 and | M, |* are isotropic (rotational symmetry), while
including the second-order terms (lower row) leads to aniso-
tropic behaviour of the transverse components M, > and
IMy|2. The cross term (CT) averages to zero for both situa-
tions and the dominant contribution to the magnetic SANS
cross section (for the parameters chosen in Fig. 5) is given by
the IM |* component. Therefore, it may be concluded that the
impact of the Néel surface anisotropy on Sy,(v, 6, ) is relatively
small. By comparing the Sy(v, 6,) from the upper and lower
rows, it is seen that by including the Néel surface anisotropy
the circular symmetry of the zeros of Sy, (deep-blue colours) is
broken. This feature becomes more clearly visible by
analyzing the azimuthal average of Sy,(v, 6,), which is readily
computed as

M| M, 2

-10-5 0 5 10
Uz (%

-10-5 0 5 10

Figure 5

Results for the two-dimensional Fourier components IM 1, IMylz, M,

M. [?

10
5
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Sm 0||||||||||||||||||||||||||||||||||||'|||||||::I‘||||||||||||||||||||||||||||||||||:=‘||||||| )
-5
-10
10-8

-10-5 0 5 10

ﬂ@:%/%wﬁﬁ% (50)

In the limit k,—0, the azimuthal average corresponding to
(49) is

. 2 2 2
,}jgnoz(v) _ I:hiv):| [lmy || +2(ex - my) . (51)

We have also calculated the pair-distance distribution function
[o,9]

PE) =& [ I(v)jy(vE) v’ dv (52)
0

and the correlation function

C§) = PE)/&. (53)

In the limit k,—0, the pair-distance distribution and the
correlation function corresponding to (51) are

2 2
tim P& = "5 (1_3:5+1i> e
8 24 (e - m,)
gy@zgo_f+%ymﬂ+fx%f 55)

These functions are displayed graphically in Fig. 6. Due to the
surface-anisotropy-induced spin disorder, the form-factor
extrema of Z(v) [Fig. 6(a)] are damped and shifted slightly to
larger g values [ie. smaller structures; compare the first
minimum of Z(v) for k = 3]. Moreover, as already observed in
numerical micromagnetic continuum simulations (Vivas et al.,
2017,2020), the oscillations are damped for the case of surface
spin disorder, which mimics the effect of a particle-size
distribution or of instrumental resolution. In agreement with

10°

-2

-10-5 0 5 10 -10-5 0 5 10
Vz (%

2 CT= —(Myﬂz + ./F\jl;./vlz) and for the total magnetic SANS cross section

Sy(v, 0,) [(48)] using expression (40). The upper row shows the results taking into account only the zero-order term in (40), which corresponds to the
case of a homogeneously magnetized particle. The lower row displays the results when the second-order term (v = 1) in (40) is taken into account. The
parameters are e = e, by = 0.1e. (By = 48 mT), k. = 0.1, ks = 3 and m, = [sin Bcosa, sin Bsina, cos B]. Note that v, and v, denote the dimensionless
components of the scattering vector [compare equation (34)]. Since the Néel surface anisotropy effectively has a cubic symmetry (see Fig. 1), we average
Sy over the angles o = (45°, 135°,225°,315°) and B = 20°. A logarithmic colour scale is used.
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this observation is the finding that the maximum of the P(§)
function [Fig. 6(b)] appears at smaller distances & than in the
homogeneous case. Likewise, due to spin disorder, the C(§)
function [Fig. 6(c)] exhibits a larger amplitude (Mettus &
Michels, 2015).

To analyze the role of the surface anisotropy more quan-
titatively, we have computed the following quantities, which
describe the deviation of the one-dimensional SANS cross
section and of the pair-distance distribution function from the
homogeneous particle case:

Tk, = 0, v) — Z(k,, v)| dv
EI(ks) - ﬂ)oo |I(ks _ 0, U)l do s (56)
2
Py = b [P =08 Pk, HIdE o)

S [P(k, = 0, 8)| d&

Fig. 6(d) depicts both €Z(k,) and €P(k,) as a function of k.
The difference is only of the order of a few percent, which
suggests that the effect of surface anisotropy on the SANS
observables is relatively weak within the present analytical
approximation: see our accompanying numerical work
(Adams et al., 2022), which takes into account the full non-
linearity of the micromagnetic equations. However, this is only
true for the magnetic interactions considered here. Taking into
account the anisotropic and long-range dipole—dipole inter-
action and the asymmetric Dzyaloshinskii—-Moriya interaction
will very likely result in more inhomogeneous spin structures

0.1
—k, =0 (b)
0.08[—F:=3
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<
Qa
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0
0 0.5 1 15 2
3
10
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—
N}
w
S
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Figure 6

Results for (a) the azimuthally averaged SANS cross section Z(v), (b) the
pair-distance distribution function P(§), (c) the correlation function C(§),
and (d) the quantities €Z (k) [(56)] and €P(k;) [(57)] (B, = 48 mT). For
the homogeneous case [blue curves in panels (a)-(c)] the surface
anisotropy is set to ks = 0, and for the inhomogeneous case [red curves in
panels (a)-(c)] we use the same parameters as in Fig. 5. The functional
dependence of Z(v), P(§) and C(§) for the uniformly magnetized particle
all correspond to the analytically well known cases, i.e. (51), (54) and (55).

and in larger deviations from the macrospin model (Vivas et
al., 2017, 2020; Pathak & Hertel, 2021). Likewise, for NMs of
elongated shapes, the surface anisotropy renders an additional
first-order contribution to the effective energy (Garanin &
Kachkachi, 2003), in addition to the second-order cubic
contribution discussed above. This new shape-induced
contribution could also lead to an enhancement of the spin
misalignment. The analytical calculations presented here
provide a general framework for future studies of more
complicated (anisotropic) magnetic interactions. The
approach can be straightforwardly adapted to other particle
shapes such as a circular planar disc.

4. Conclusions

We have analytically computed the magnetization distribution
and the ensuing magnetic SANS cross section of a spherical
nanoparticle. Our micromagnetic Hamiltonian takes into
account the isotropic exchange interaction, an external
magnetic field, a uniaxial anisotropy for the particle’s core and
Néel anisotropy on its boundary. The resulting Helmholtz
equation has been solved by expanding the real-space
magnetization in terms of spherical Bessel functions and
spherical harmonics. The central results are the infinite series
(16) and its second-order expansion (21) for the real-space
magnetization, and the corresponding Fourier transforms (37)
and (40). Using these expressions, the two-dimensional
magnetic SANS cross section Sy(v,0,), the azimuthally
averaged SANS signal Z(v), and the correlation functions
P(&) and C(€) have been obtained and compared with the case
of a homogeneous spin configuration (uniform magnetization
vector field). The signature of Néel surface anisotropy (of
constant k) has been identified in all of these functions.
However, its effect is relatively small, even for large values of
ks. Taking into account the magnetodipolar and/or the
Dzyaloshinskii-Moriya interaction, or shape asymmetry, will
probably result in configurations with stronger spin misalign-
ment (e.g. in vortex-type textures or skyrmions) and thereby in
more prominent signatures in the SANS cross section and
correlation function. These interactions are beyond the scope
of the current analytical approach and will be considered in
our future (numerical) work.

APPENDIX A
Solution of the boundary value problem of the
Helmholtz equation

The coefficients ¢/, in the fundamental solution (15) of the

Helmholtz equation (9) must be determined such that the
Neumann boundary condition (10) is satisfied. For this
purpose, we use the method of least squares, where we make
use of the orthogonality properties of the spherical harmonics
Y (0, ¢). The normal derivative of (15) at the surface of the
NM (£=1)is
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dwﬂ %) 14
=22 il Y69, 69

= =0 m=—¢

where

. / d . .
9] = 5 ]zmﬁs)Ll. (59)

Our goal is now to minimize the following error functional

with respect to the coefficients cfm:

-]

Xalng|
{xyz}

2

- Z Z Clm[]i(lKﬂE)]g Yen(0, @)| sinfdodg. (60)
=0 m=—¢
The minimum of this error functional is found from the
.. . .. B .
condition that the partial derivatives of [c},,] with respect to
(c )" vanish,

de[cf ]

B(C ;"

where * denotes the complex conjugate. Using the ortho-
gonality relation (62) [p. 378 (14.30.8) of Olver et al. (2010)]

—0, (61)

and by defining the integral /; by (63),
2
{ Of Yiu(0, $) Yi(6, ¢)sin0dodep = §,,6,,, (62)
2r
[f Y0, ¢) |n,|sin0dode = I, (63)
00

the solution of (61) can be written as
1
B
Ci =T v
! [lj(lK,géf)]g:l ae;;Z}

Alternatively, again using the indices ¢ and m, expressing the
coefficient x? as in (13) and using the matrix vector product,
the coefficients ¢/ can be more explicitly written as

tm

xAI. (64)

ot

C? _ ksgﬁ . dlag[lif(m’ Izy/m’ Ifm] - my
" []Z(lKﬁ%_)]g:I

For some low orders of £ and m, the exact solutions of the
integrals I§, are presented in Appendix B.

From (65) several conclusions can be drawn. First, the zero-
order term (£ = m = 0) in (15) vanishes, which can easily be
shown by rewriting the coefficient cgo as

P ks(nl/z)(gﬁ -m) _
* [iO(iKﬁ‘i:)]ézl ’

and this is due to the orthogonality of m, and gz with g € {1, 2}
[see (6)]. Moreover, we see that

1”,3("3 = Os 91 ¢) = Oa (67)

which is a consequence of the behaviour of the spherical
Bessel functions of the first kind at the origin. Since the j, with
¢ > 1 all vanish at the origin & = 0, this implies that the total ¥4
also vanishes at the origin. Note that j,(0) = 1 but does not

(65)

(66)

contribute to ¥4 since cgo = 0. From the physical point of view
this makes sense, since the spin misalignment is caused by the
Néel surface anisotropy and thus, for symmetry reasons, there
is no spin disorder at the centre of the spherical NM; the
highest misalignment is found at its surface. Secondly, in
Table 1 in Appendix B it is seen that the coefficients /7,
vanish for odd ¢ or m and that I, = I/, so that the
expansion coefficients also exhibit this symmetry,

cf =ch . (68)

Taking these properties into account, one can express the
solution (15) more conveniently in terms of the associated
Legendre polynomials P}'(cos 0) with £ = 2v and m =2 {note
that we use the convention that Y, (0, ¢) = N,, P} (cos6) x
exp (im¢) [p. 378 (14.30.1) of Olver et al. (2010)]},

o0 v
Vp = 2 2 ab Y (gh) Pa(cosO)cos2ug), (69
v=1 p=l
where Y,(7) is defined in (17) and af, in (18).

The infinite series in (18) is a consequence of the relation
between the spherical Bessel functions of the first kind and the
ordinary Bessel functions of the first kind [p. 262 (10.47.3) of
Olver et al. (2010)],

50 = (2) it (70)

and the well known series representation [p. 262 (10.47.3) of
Olver et al. (2010)]

B 0 (_1)5(T/2)2:+l

APPENDIX B
Integral coefficients

The integrals /%, can be simplified, since both n, and Y7, (6, ¢)
are separable functlons in 6 and ¢. By rewriting the spherical
harmonics in terms of complex exponentials and associated
Legendre polynomials, and by using the definition of the
Cartesian components of the surface normal vector n from
(3) {note that we use the convention that Y,,(6,¢)=
Ny, Pj(cosO)exp (im¢p) [p. 378 (14.30.1) of Olver et al
(2010)]}, the integrals are expressed as follows:

I = N KU &
]gm = Nlmer)L Ul(s)’ (74)
where
T
KO = [ Pr(cos 6) |sin 0] sin 6 d6, (75)
0
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L

K2 = [ Pp(cos6) |cos 0] sin 6 d6, (76)
0
27 201 +( 1)\’"\]
+ j—
a _ —i dp = (-)"PE—— =
Um / eXp( 1m¢) |C0S ¢| ¢ ( ) 1— m2 + 8|m|,1 7
0
(77)
2 2[1 ( 1)\ ‘]
+ _ m
@ _— i i =
U,f — / exp (—ime) |sin | dpp = T"“Smu (78)
0
2
US) = [ exp (—ime) dgp = 218, . (79)
0
2041 —m)]

The integrals UY, U% and U are solvable straightforwardly
using Euler’s formula for the complex exponential and by
splitting the region of integration according to the absolute
values of the trigonometric functions. In the denominator of
U'Y and U® we have included the Kronecker delta §),,; to
take account of the cases m = %1. It is common to express the
integrals ng and Kfj,)l by the substitution x = cosf (dx =
—sinf df),

1
KD = [ Preo) —x)"dx, (81)

-1

1

KD = [ Py(x) x| dx. (82)

-1

Using U = 273, we need only compute K{) such that the
associated Legendre polynomials in Kfzz,)n are reduced to the
Legendre polynomials with one index only [p. 352 of Olver et
al. (2010)]. By considering the symmetry properties of the
Legendre polynomials it becomes clear that the integral must
vanish for odd ¢ and can be simplified for even ¢ in the

following way:
1
Ky =[1+ (=] [ Py(0)xdx. (83)
0

The closed form of K% is then found in terms of the Gamma
function [p. 771 (7.126.1) of Gradshteyn & Ryzhik (2007)],

) @)1+ (=1)]

= . 84
LOTTAR(B/2 — 2/2) T (/2 4 2) 84)
The overall solution for I}, is then written as
1+ (-D7@e+1)"
. _ AL+ (=DTee+ )

T 4TG/2 — €/2) T (62 +2) o

Since we only have to calculate Kﬁn) for even m [because UV
and U? include the term 1 + (—1)"/], we may use the index
m = 2u and, by exploiting the parity of the associated
Legendre polynomials P}'(—x) = (—l)HmPZ"(x), we find

Table 1

Values of the integrals (19) for some small values of £ and m.

L= 57 [T Y76, §)] sin 6 cos | sin0dO dp = (—1)"/2
m| 2 /
2 EDM+ (=D [zz +1 (e~ m)!}l 2/1 PrO) (1 — ) de
0

1—m?+6,, 47 (L +m)!
m
l 0 +1 +2 +3 +4 +5 +6
0 Y
1 0 0

2 G

1 /157\"?
8 s\ 2

3 0 0 0 0
4 3P o 1\ 1 (35m\""
T 64 32\2 64\ 2

5 0 0 0 0 0 0

6 S13m'? o (1365m)"?
1024 2048

0 3 (9m\'"?  (3003m)"
T1024\ 2 2048

B, = [ [T Y6, ¢)l sinOsin | sin 6 d6 dgp
2+ (=D + (-1 |:2£ +1(— m)!]‘/2 1

P70 (1 =) dx
0

1—m>+6,,, 4 (L + m)!
m
¢ 0 +1 +2 +3 +4 +5 +6
0 nl/Z
1 0 0
2 _6m” g _1 (1"
8 s\ 2
3 0 0 0 0
4 _3(711/2) 0 ,l Sj 12 0 7l 35l 12
64 32\ 2 64\ 2
5 0 0 0 0 0 0
6 S o 13651 3 91m\"? o (3003m)"?
1024 C 2048 1024 \ 2 2048

all + (=1)“@e + )72
4AT(3/2—L/2)T(/2 +2) ™°

27 e
I, = ‘/ﬂ. ./0 Y}, (0, ¢)| cos 6] sinfdodp =

m

¢ 0 +1 +2 43 44 45  +6
O 7_[1/2
1 0 0
2 (5m)"” 0 0

4
3 0 0 0 0
4 2 0 0 0 0

8

5 0 0 0 0 0 0
6 (13m)"? 0 0 0 0 0 0

64
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KD, = [+~ P01 - de. (86)
0

From these results it is seen that the integrals I, with o €
{x, v, z} vanish for odd ¢ and m [note that in (86) this is only
the case for m = 2p1]. For the remaining integrals KSV),ZM in (86),
where ¢ = 2v, we do not give an expression in closed form.
However, one must exist in terms of the Gamma function or
the Beta function, since [p. 324 (3.251.2) of Gradshteyn &

Ryzhik (2007)]
s+1 3
( . ,5>, 87)

1

/x’(l —)62)1/2 dx = 1B

2

0
where B(-, -) is the Beta function (Euler integral), and the
associated Legendre functions P;’u‘ of even order and degree
are true polynomials, as seen for example from the related
Rodrigues formula [p. 360 (14.7.14) of Olver et al. (2010)]. We
used Mathematica (Wolfram Inc.) to determine the integrals
up to the sixth order in £ (see Table 1).

APPENDIX C
Derivation of the Fourier transform of the
magnetization

The Fourier transform of the magnetization vector field M(r)
is written as

~

M(q) = / M@ exp(—ig - nd'r.  (88)

(2 )3/2

In the following, we will use dimensionless quantities. For this
purpose, we define the dimensionless scattering vector v = qR,
where R is the radius of the nanomagnet, the dimensionless
position vector ¢ = r/R and the dimensionless magnetization
vector m = M/M,, where M, is the saturation magnetization.
Substituting in (88) results in

M) = f m@exp(—iv- OEE (89)

(2 )3/2

The dimensionless Fourier transform M is then defined as

Ko = - [m@epciv-gas o0
Vv
with
~ ATR’M, ~
M= 7(271)3/2 91)

The next step consists of calculating the Fourier integral of the
first-order approximation (36) of the magnetization vector m.
Since (36) is formulated in dimensionless spherical coordi-
nates &, 0, ¢, it is convenient to express the scattering vector v
in spherical coordinates as well,

& = [Esin6cos ¢, EsinOsin P, & cosb], (92)

V= [v sin 6, cos ¢,, vsin 6, sin @, , v cos Hq], (93)

so that the plane-wave expansion of the complex exponential
can be used (Jackson, 1999),

exp (—iv - &) = 4712 Z (—0)'/(V8) Y1, (0, 9) Y (6, &,)-

k=0 n=—

(94)

The Fourier integral (90) is then expanded into the following
infinite series:

[e9) k ~
Z Z (_i)kMkn(U) Ykn(9q7 ¢q)’ (95)

k=0 n=—k

J\A;i(v) =

where

2

A T 1
M, (v) = [ [ [m(&) () Y}, (0. )& sin0d& dO dg. (96)
000

We now use the infinite series (15) for 4 to express the first-
order approximation of the magnetization, which leads to

m($) = m, + Z 85 Z Z sz]z(l’(ﬁg) Y (0, @) 7)

p=1 =0 m=—

Since the integral transform (96) is linear, each term in (97)
can be separately transformed. For the zero-order term, we
obtain

O\l:\l-)

71
[ [ mgyj (VE) Y76, ¢) € sin 0 d dO dgp
00

— (47 )1/2]1(U)

my3, 48,0- (98)
This result is well known to the neutron-scattering community
as the spherical form factor, corresponding to a uniformly
magnetized spherical particle (Michels, 2021). In the second
step, we carry out the integration of the higher-order terms
from (97). The radial and angular parts in the higher-order
terms of (97) are multiplicative, such that the volume integral
(96) is separable into

1
AL () = [ (ix48) ji (vE) € d, (99)
0

2w

B = [ [Y,,(0,9) Y}, (6. ¢)sin0dod¢.  (100)
00

As an intermediate result, the integral (96) is then rewritten as

My, 0) = > 1

08k,08n,0

+ZgﬂZ Z C(’m ek(U)B

p=1 (=0 m=—¢{

(101)

The integral (100) directly corresponds to the orthogonality
relation of the spherical harmonics and thereby we have BY" =
8018, [P- 378 (14.30.8) of Olver et al. (2010)]. Due to the term
8¢ in B and since B and Afk are multiplicative in (101),
the following spherical Hankel transform results:
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AR (v) = (102)

1
ffk(i/fﬂg)fk(US) £ dé.
0

In order to calculate these integrals, we replace [using (70)]
the spherical Bessel functions of the first kind j,(-) with the
ordinary Bessel functions of the first kind J,(-). This yields

A AN AN 103
=" (55) we. ao
where
1
Wf(U) = Oka+1/2(iK;s§) Jk+1/2(U£:) §d§ (104)

is the Hommel integral. The result for the integral W,‘f can be
found in the textbook by Gradshteyn & Ryzhik (2007) [p. 664
(6.521.1)] and is written as

U]kfl/Z(U)Jk+1/2(iKﬁ) IKﬂJk 1/2(1Kﬁ)Jk+l/2(U)
v+ Kﬁ

W) = —

(105)

Again, upon applying relation (70), we write the solution for
Af,{(u) more conveniently in terms of spherical Bessel func-
tions of the first kind as

Ujk—1(U)jk(iK¢;) IKﬁ]k 1(1Kﬁ)]k(v)
v+ /c

Af(v) = — (106)

Now that the integrals have been obtained, we have to
substitute (101) in (95). The term on the first line of (101) only
accounts for k = 0 and n = 0 in (95). Therefore, the contri-

bution of this term to M is [j;(v)/v]m,, because Yyo(6, ¢) =
1/(47)". Since B = §,,8,,,, the final result is

mn>

m, + Z g Z Z (=), AL (V) Y, (0, ¢,)-

=0 n=—k

M()—

(107)

Using the properties of the coefficients cfn studied in

Appendix A, we reformulate (107) in terms of the associated
Legendre polynomials, the indices k = 2v and n = 21, and the
coefficients af,:

R =" m,
y
L 5 a0 P st cosiy),
(108)
where the radial function is given by
oy = P i) ik )0

U2+Kﬂ

Using once again expression (70) and the well known series
(71) for the Bessel functions of the first kind, we redefine the
spherical Bessel functions of imaginary arguments [as they
appear in (109)] as

1/2 x ( 1) (T/Z)Z(H—v)
Y,(v) = jo(it) = > Zom (110)
00 2(s+v)—1
8,(0) = i, (i7) = ”WZ( b/ 111

—sICQ2v +5 + 1/2)°

such that it becomes clear that M(v) is a purely real-valued
function. The radial function is then rewritten as

_ Uj2v—1(U)T (Kﬂ) KBNU(K,_«;)JZ\)(U)

B _
py(v) = I

(112)

By comparing this result with (102), we find the following pair
of spherical Hankel transforms,

1
Pi(W) = [ 1, (ks8)],(v8) & dE. (113)
0

By comparing the result of (108) with (16) it becomes clear
that the angular part is (due to the orthogonality relation of
the spherical harmonics) shape invariant under Fourier
transformation, while the spherical Hankel transform (113) of
the radial function Y, (ks£) remains.
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