electronic reprint

JOURNAL OF
APPLIED
CRYSTALLOGRAPHY

Appl Cryst

ISSN: 1600-5767
journals.iucr.org/j

Magnetic neutron scattering from spherical nanoparticles
with Néel surface anisotropy: atomistic simulations

Michael P. Adams, Andreas Michels and Hamid Kachkachi

J. Appl. Cryst. (2022). 55, 1488-1499

==. IUCr Journals

WEE (RYSTALLOGRAPHY JOURNALS ONLINE

This open-access article is distributed under the terms of the Creative Commons Attribution Licence
https://creativecommons.org/licenses/by/4.0/legalcode, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and source are cited.

J. Appl. Cryst. (2022). 55, 1488-1499 Michael P. Adams et al. - Magnetic neutron scattering: atomistic simulations


https://journals.iucr.org/j/
https://doi.org/10.1107/S1600576722008949
https://creativecommons.org/licenses/by/4.0/legalcode
https://crossmark.crossref.org/dialog/?doi=10.1107/S1600576722008949&domain=pdf&date_stamp=2022-11-04

research papers

3 JOURNAL OF
; APPLIED
3 CRYSTALLOGRAPHY

ISSN 1600-5767

Received 16 May 2022
Accepted 6 September 2022

Edited by G. J. Mclntyre, Australian Nuclear
Science and Technology Organisation, Lucas
Heights, Australia

Keywords: magnetic neutron scattering;
small-angle neutron scattering; magnetic
nanoparticles; surface anisotropy;
micromagnetics.

Supporting information: this article has
supporting information at journals.iucr.org/j

60%
| 40%

20%

OPEN @& ACCESS

Published under a CC BY 4.0 licence

Magnetic neutron scattering from spherical
nanoparticles with Néel surface anisotropy:
atomistic simulations

Michael P. Adams,®* Andreas Michels* and Hamid Kachkachi®

*Department of Physics and Materials Science, University of Luxembourg, 162A avenue de la Faiencerie, L-1511
Luxembourg, Grand Duchy of Luxembourg, and bLaboratoire PROMES CNRS UPR8521, Université de Perpignan via
Domitia, Rambla de la Thermodynamique, Tecnosud, F-66100 Perpignan, France. *Correspondence e-mail:
michael.adams@uni.lu

A dilute ensemble of randomly oriented non-interacting spherical nanomagnets
is considered, and its magnetization structure and ensuing neutron scattering
response are investigated by numerically solving the Landau-Lifshitz equation.
Taking into account the isotropic exchange interaction, an external magnetic
field, a uniaxial magnetic anisotropy for the particle core, and in particular the
Néel surface anisotropy, the magnetic small-angle neutron scattering cross
section and pair-distance distribution function are calculated from the obtained
equilibrium spin structures. The numerical results are compared with the well
known analytical expressions for uniformly magnetized particles and provide
guidance to the experimentalist. In addition, the effect of a particle-size
distribution function is modelled.

1. Introduction

Magnetic nanoparticles are the subject of intense worldwide
research efforts which are partly motivated by potential
applications in areas such as medicine, biology and nano-
technology [see e.g. Lak et al (2021), Diebold & Calonge
(2010), De et al. (2008), Baetke et al. (2015), Stark et al. (2015),
Han et al. (2019), Batlle et al. (2022) and references therein].
In the majority of studies, the internal spin structure of the nano-
particles is neglected and assumed to be uniform (called the
macro- or superspin model). While this is probably justified in
many application-oriented approaches in which an overall
understanding is sufficient, it is of interest, at least from the
standpoint of fundamental science, to elucidate the effect of a
non-uniform spin structure on a certain physical property.

Scattering techniques, in particular employing X-rays and
neutrons, have proved to be very powerful in this endeavour,
since they provide statistically averaged information on a large
number of scattering particles. For instance, using Monte
Carlo simulations of a discrete atomistic spin model, Kohler et
al. (2021) have numerically studied the influence of antiphase
boundaries in iron oxide nanoparticles on their spin structure.
These authors used the Debye scattering equation to relate
the internal spin disorder to the broadening of certain X-ray
Bragg peaks. Vivas et al. (2020) carried out micromagnetic
continuum calculations of the spin structure of defect-free iron
nanoparticles and related a vortex-type magnetization
configuration to certain signatures in the magnetic neutron
scattering cross section and correlation function.

Magnetic small-angle neutron scattering (SANS) is a
powerful technique for investigating spin structures on the
mesoscopic length scale (~1-100 nm) and inside the volume
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of magnetic materials (Miihlbauer ez al., 2019; Michels, 2021).
Recent SANS studies of magnetic nanoparticles, in particular
employing spin-polarized neutrons, unanimously demonstrate
that their spin textures are highly complex and exhibit a
variety of non-uniform, canted or core-shell-type configura-
tions [see e.g. Disch et al. (2012), Krycka et al. (2014), Hasz et
al. (2014), Giinther et al. (2014), Maurer et al. (2014), Dennis et
al. (2015), Grutter et al. (2017), Oberdick et al. (2018), Ijiri et
al. (2019), Bender et al. (2019), Bersweiler et al. (2019),
Zakutna et al. (2020), Honecker et al. (2022) and references
therein]. The analysis of magnetic SANS data relies largely on
structural form-factor models for the cross section, borrowed
from nuclear SANS, which do not properly account for the
existing spin inhomogeneity inside a magnetic nanoparticle.
Progress in magnetic SANS theory (Honecker & Michels,
2013; Michels et al., 2014; Mettus & Michels, 2015; Erokhin et
al., 2015; Metlov & Michels, 2015, 2016; Michels et al., 2016,
2019; Mistonov et al., 2019; Zaporozhets et al., 2022) strongly
suggests that, for the analysis of experimental magnetic SANS
data, the spatial nanometre-scale variation of the orientation
and magnitude of the magnetization vector field must be taken
into account, going beyond the macrospin-based models that
assume a uniform magnetization.

In this paper, we employ atomistic simulations using the
Landau-Lifshitz equation (LLE) to investigate the role of the
Néel surface anisotropy in magnetic nanoparticles and its
effect on the magnetic SANS cross section and correlation
function. We take into account the isotropic exchange inter-
action, an external magnetic field, a magnetocrystalline
anisotropy for the core of the nanoparticles and Néel aniso-
tropy for spins on the surface. The influence of a particle-size
distribution function on the magnetic SANS cross section and
pair-distance distribution function is also studied. The
numerical results reveal marked differences from the super-
spin model and provide guidance for the experimentalist to
identify non-uniform spin structures inside magnetic nano-
particles. We also refer to our accompanying analytical study
of the problem (Adams et al., 2022), which is restricted to a
linear approximation in the magnetization deviation.

The paper is organized as follows. In Section 2 we provide
information on the atomistic simulations using the LLE. In
Section 3 we display the expressions for the magnetic SANS
cross section and for the pair-distance distribution function.
The results of the numerical calculations are discussed in
Section 4, with Section 4.1 focusing on the effect of the Néel
surface anisotropy and Section 4.2 discussing the influence of a
log-normal particle-size distribution on the SANS obser-
vables. Section 5 summarizes the main findings of this study
and provides an outlook on future challenges. Appendix A
features results for the SANS observables for different sign
combinations of the anisotropy constants.

2. Details of the atomistic SANS modelling using the
Landau-Lifshitz equation

Fig. 1 shows a schematic depiction of the procedure adopted
here to generate and calculate the spin structure, and to obtain

the ensuing magnetic SANS cross section and correlation
function. This flow-chart-type representation will be discussed
in more detail below.

A spherical many-spin nanomagnet is viewed as a crystallite
consisting of N atomic magnetic moments #; = p,m;, where i,
denotes the magnitude of the atomic magnetic moment and m;
is a unit vector specifying its orientation. We assume the spins
‘sit” on a simple cubic lattice, so that p, = M.a’, where M, is the
saturation magnetization of the material and a is the lattice
constant. The spherical shape of the nanomagnet is cut from a
simple cubic regular grid [Fig. 1(a)] and its radius R is defined
as R =[(N —1)/2]a, where the integer N is the number of
atoms on the side of the cubic grid. The magnetic state of the
nanomagnet is investigated with the help of the atomistic
approach based on the following Hamiltonian (Dimitrov &
Wysin, 1994; Kodama & Berkovitz, 1999; Kachkachi &
Garanin, 2001a,b; Iglesias & Labarta, 2001; Kachkachi &
Dimian, 2002; Kachkachi & Garanin, 2005; Kazantseva et al.,
2008):

HZHEx+Hz+HA (1)
J N N

=-3 Z m; -m; — 1, B, - Zm,- + ZHAJ’ )
ijen.n. i=1 i=1

where Hpy is the nearest-neighbour (n.n.) exchange energy,
J > 0 is the exchange parameter, H, denotes the Zeeman
energy, B, is the homogeneous externally applied magnetic
field and H, represents the magnetic anisotropy energy. For
the core spins we assume the anisotropy to be of uniaxial
symmetry, while for surface spins we adopt the model
proposed by Néel (1954). H, ; can then be expressed as

_Kc(mi . eA)2 ’

- (K/2) Z;‘en.n (mi : “ij)z’

[ € core,

Hai ®)

i € surface,

where K. > 0 and K > 0 denote, respectively, the core and
surface anisotropy constants, e, is a unit vector along the core
anisotropy easy direction, and u;; = (r; — r;)/|[r; — 1;| is a unit
vector connecting the nearest-neighbour spins i and j. The
surface spins are defined as those spins which have a coordi-
nation number less than six.

The magnetodipolar interaction has been ignored in our
simulations. This is motivated by the numerical complexity of
this energy term, in particular for atomistic simulations (here,
for a 10 nm diameter particle the number of spins is N =
11 633), and by the expectation that it is of minor relevance for
smaller-sized nanomagnets (Kohler et al, 2021; Pathak &
Hertel, 2021).

The dynamics of each individual magnetic moment m; are
described by the Landau-Lifshitz equation (LLE) (Berkov,
2007),

dm,
dr

= —ym; X Bf“ —om; X (ml- X B,-Cff), 4)

where y is the gyromagnetic ratio and « denotes the damping
constant. The deterministic effective magnetic field acting on
the spin i is given by
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The LLE is solved numerically by using the explicit Euler
forward-projection method (Baras, 2005), which consists of
two steps. The first step, as seen from equation (6) below, is the
simple Euler forward scheme, and the second step, as seen
from equation (7), is the projection (or normalization) onto
the unit sphere to enforce the constraint ||m;|| = 1. Since we are
interested in the static equilibrium, this first-order method is
fully appropriate. In equations (6) and (7), k is the time
iteration index while i refers to the ith lattice site,

dm*
m™T = mf 4 5, dtl , (6)
Euler
m;
k+1 i
T mE

h, denotes the time step for the integration procedure. For the
termination of the energy minimization, we employ the
following criterion:

(a) Spherical particle

1 (b) Time evolution of LLE

N 172
<1078, (8)

dm¥
dt

h, [
a0y

i=1

The macroscopic state of the nanomagnet is then described by
the following super- or macrospin (representing the net
magnetic moment):

1 N
m=—)>» m, 9)
Py

As an example, we show in Fig. 1(b) the temporal evolution of
the Cartesian magnetization components of m and in Fig. 1(c)
the numerically computed equilibrium spin configuration for a
spherical nanomagnet at zero applied field in a plane across its
centre. It is seen that the spins at the centre of the nanoparticle
are directed along m while the surface spins exhibit significant
misalignment, which is due to the presence of the Néel surface
anisotropy. Note that m; are unit vectors, whereas generally
(|| 7~ 1.

In our simulations we use the following parameters: atomic
magnetic moment p, = 1.577 x 10~**> A m? (corresponding to
1.7 up with pp the Bohr magneton), lattice constant a =
0.3554 nm, M, = /La/a3 =351 kA m}, exchange constant J =
8.7 x 107?* Jatom™ ', core anisotropy constant K. =3 X
10~%* Jatom ™!, damping constant o = 3 x 10" s™' T~ gyro-
magnetic constant y = 1.76 x 10" s~ T~' and an integration
time step of i, = 5 fs. The surface anisotropy constant K, was

(¢) 3D equilibrium spin structure (d) Hysteresis loop

y [nm]

By [T]

(e) Fourier transform (f) 2D SANS cross section

Ty [nm_I]
gy [nm™"]

=

¢. [nm™1] ¢. [nm™]

Figure 1

=

(g) 1D SANS cross section (h) Pair-distance distribution

I(q)
p(r)

=

g [nm~1] r [nm)]

A flow chart explaining the atomistic SANS simulation procedure. (a) A spherical nanoparticle is cut from a simple cubic grid with N x N x N atoms. (b)
The time evolution of the Cartesian magnetization components obtained by solving the Landau-Lifshitz equation. (¢) The computed equilibrium spin
structure of a spherical nanoparticle at remanence (cut through the centre of the particle). (d) A hysteresis loop of an ensemble of randomly oriented
nanoparticles. (¢) The computed Fourier transform. (f) The two-dimensional magnetic SANS cross section dXy,/d2. (g) The azimuthally averaged
magnetic SANS cross section /(g). (7) The pair-distance distribution function p(r).
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used as an adjustable parameter. Experimental K values for
nanoparticles and thin films can be found in the work of
Gradmann (1986), Batlle et al. (2022) and O’Handley (2000).
A value of K, = 522 x 107" Jatom ™' has been estimated by
Kachkachi & Dimian (2002) for a 4 nm-sized face-centred
cubic cobalt particle.

For the calculation of the magnetic SANS cross section
dX\/dQ2 [Fig. 1(f)], it is necessary to compute the discrete
Fourier transform of all the m; belonging to the spherical
nanomagnet [Fig. 1(e)]. In Section 3, the expressions for d X,/
d2 are formulated for a continuous magnetization distribu-
tion M(r) and of its Fourier transform 1\~’[(q). These functions
are defined as follows:

1 [« .
MO = [M@ewpia-naa. o

M(q) = o )3/2/M(r)exp(—1q r)d’r. (11)
Using u; = p.m;, the discrete-space Fourier transform is
computed as

M ~

(q) = 2 )
where r; is the location point of the ith spin and q represents
the wavevector (scattering vector, defined in Fig. 2). Equation
(12) establishes the relation between the outcome of the
simulations, m;, and the magnetic SANS cross section, dX,/
dQ2. In the standard SANS geometry, the q space of interest is
defined by q = ¢[0, sin6, cos#], which corresponds to the two-

—n Z m; exp (—iq - r;), (12)

Figure 2

A sketch of the neutron scattering geometry. The applied magnetic field
B, || e, is perpendicular to the wavevector k, || e, of the incident neutron
beam (B, L k¢). The momentum transfer or scattering vector q is defined
as the difference between k, and ki, i.e. ¢ = kg — k;. SANS is usually
implemented as elastic scattering (ko = k; = 277/1) and the component of q
along the incident neutron beam, here g,, is much smaller than the other
two components, so that q [0, g, ¢,] = ¢[0, sin 0, cos 0]. This demon-
strates that SANS predominantly probes correlations in the plane
perpendicular to the incident beam. For elastic scattering, the magnitude
of q is given by ¢ = (47r/1) sin(y), where A denotes the mean wavelength
of the neutrons and 2 is the scattering angle. The angle 6 = Z(q, By) is
used to describe the angular anisotropy of the recorded scattering pattern
on the two-dimensional position-sensitive detector.

dimensional detector plane (g, = 0, see Fig. 2). The two- and
one-dimensional magnetic SANS cross sections dX,,/d2
[Figs. 1(f) and (g), respectively] are then computed according
to equation (13). A further Fourier transformation yields the
pair-distance distribution function [Fig. 1(%)].

At each value of the external field, atomistic simulations of
the spin structure and of the ensuing magnetic SANS cross
section were carried out for 256 random orientations of the
core anisotropy axes e, of the particle with respect to the field
B,. More specifically, once the lattice orientation has been
randomly selected, the easy-axis orientation of the particle’s
core and the distribution of the Néel anisotropy are fixed. The
whole system (core plus surface anisotropy) is then randomly
rotated relative to B,. For the generation of the random
angles, we used the low-discrepancy Sobol sequence (sob,
https://www.mathworks.com/help/stats/sobolset.html). There-
fore, except Fig. 3, all the data shown in this paper correspond
to an ensemble of randomly oriented particles. The simula-
tions were carried out by starting from a large positive
(saturating) field of about 10 T, and then the field was reduced
in steps of, typically, 30 mT.

3. Magnetic SANS cross section and pair-distance
distribution function

The quantity of interest in experimental SANS studies is the
elastic magnetic differential scattering cross section dX,/d<2,
which is usually recorded on a two-dimensional position-
sensitive detector. For the most commonly used scattering
geometry in magnetic SANS experiments, where the applied
magnetic field By || e, is perpendicular to the wavevector kq ||
e, of the incident neutrons (see Fig. 2), dX)/d2 (for un-
polarized neutrons) can be written as (Miihlbauer et al., 2019)

3
SN (q) = 1B+ 17 o
+ |]\~4Z|2 sin” 6 — (Myz\?: + NIMZ) sin 6 cos 0],
(13)

where V is the scattering volume, by = 2.91 x 10 A~ m™" is
the magnetic scattering length in the small-angle regime (the
atomic magnetic form factor is approximated by 1 since we are
dealing with forward scattering), I\N’l(q) = [Mx(q), M (@), M (q)]
represents the Fourier transform of the magnetization vector
field M(r) [M(r), M,(r), M (x)], 6 denotes the angle
between q and B, and the asterisk * stands for the complex-
conjugated quantity. Note that in the perpendicular scattering
geometry the Fourier components are evaluated in the plane
q. = 0 (see Fig. 2).

The numerically computed magnetic SANS cross sections
that are displayed in this paper correspond to the following
average:

dZy dZy .
M2_<d9> KE: ' (14)
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where dXy; ;/dS2 represents (for fixed K, and By) the magnetic
SANS cross section for a particular core easy-axis orientation
e, (with reference to the index ‘k”) and /C denotes the number
of random configurations. Equation (14) implies the absence
of interparticle interactions.

For a uniformly magnetized spherical particle with its
saturation direction parallel to e_, i.e. M, = M, =0 and M, =
M, equation (13) reduces to

. 2
dx fl(qR)] sin? 6, 15)

M — A 2
do (CI’ 9) Vp( p)mag9 qR

where V= 47R/3 is the particle’s volume, (A,o)rzrlag =
bA(AM) = b}yM? is the magnetic scattering-length density
contrast and j;(gR) is the first-order spherical Bessel function.
The well known analytical result for the homogeneous sphere
case [equation (15)] and its correlation function [see equation
(18) below] serve as a reference for comparison with the non-
uniform case.

It is often convenient to average the two-dimensional SANS
cross section (dX\/d2)(q) = (dX\/d2)(g,, g.) = (dX\/d2)(q, 6)
along certain directions in q space, e.g. parallel (8 = 0) or
perpendicular (6 = 7/2) to the applied magnetic field, or even
over the full angular 6 range. In the following, we consider the
27 azimuthally averaged magnetic SANS cross section,

2w

1 [dSy
10 =5, [ G0, (16)

0

which is used to compute the pair-distance distribution func-
tion p(r) according to

o0
p(r) =7 [1(q)jolqr) ¢’ dq, (17)
0
-4
10, 00z 60%
|
40%
1.4%
20%
0% 0%

Figure 3

Selected 3D equilibrium spin structures arising from the Néel surface
anisotropy [compare also with Figs. 2 and 3 in the accompanying
analytical study (Adams ez al., 2022)]. (a) K, = 522 x 107> Jatom™" and
(b) Ky =522 x 107> Jatom ™. Further parameters are core-anisotropy
axis e, = [0, 0, 1], core-anisotropy constant K, = 3 x 1072* Jatom™" and
external magnetic field By = [0, 0, 150 mT]. The particle diameter is D =
Snm. The colour code depicts the spin misalignment relative to the
average magnetization vector, namely ém; = [m; —m/|m][[|. At the
surface of the nanomagnet the spin deviations are larger than those in the
core.

where j,(qr) = sin(gr)/(qr) is the spherical Bessel function of
zero order. p(r) corresponds to the distribution of real-space
distances between volume elements inside the particle
weighted by the excess scattering-length density distribution;
see the reviews by Glatter (1982) and Svergun & Koch (2003)
for detailed discussions of the properties of p(r) and for
information on how to compute it by indirect Fourier trans-
formation (Bender et al., 2017). For our discrete simulation
data, the integrals in equations (16) and (17) were approxi-
mated by the trapezoidal rule. Apart from constant prefactors,
p(r) of the azimuthally averaged single-particle cross section
[equation (15)], corresponding to a uniform sphere magneti-

zation, is given by (for r < 2R)
3r r
+ ) (18)

P(’)=”2<1‘4R 68

We also display results for the correlation function c(r), which
is related to p(r) by

c(r) = p(r)/7. (19)

As we will demonstrate in the following, when the particles’
spin structure is inhomogeneous, dX,,/d2 and the corre-
sponding p(r) and c(r) differ significantly from the homo-
geneous case [equations (15) and (18)], which serves as a
reference. Because of the 2 factor, features in p(r) at medium
and large distances are more pronounced than those in ¢(r).

4. Results and discussion
4.1. Effect of the Néel surface anisotropy

Fig. 3 displays as an example the spin structures of a 5 nm-
sized spherical nanomagnet for the cases of a small and large

1 _
0.75
0.5+
0.25
0
g 0F
-0.25
0.5¢ K, =0, 7., ~050
J K, =522m,,~ 050
-0.75 { |- K, =26.1,m,, ~0.72
A} K, =522,m,, ~0.70
-10 -7.5 -5 -2.5 0 2.5 5 7.5 10
) By [T]
Figure 4

The computed normalized magnetization 77, [compare equation (9)] of
an ensemble of randomly oriented spherical nanomagnets for different
values of the surface anisotropy constant K (in units of 107>° J atom ™",
see inset). The particle diameter is D = 10 nm and the remanence values

are indicated in the inset.
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surface anisotropy constant K, and Fig. 4 shows computed
hysteresis curves for an ensemble of randomly oriented 10 nm-
sized nanomagnets. As expected, increasing K results, for a
given particle size, in a progressive surface spin disorder which
propagates into the bulk of the nanomagnet. The effect of an
enhanced K also becomes visible in the magnetization curves
via an increased coercivity H. and remanence m,. For K = 0
and dominant exchange, we recover the well known results
from the Stoner—Wohlfarth model (Usov & Peschany, 1997),
i.e. we find a reduced remanence of m, = 0.5 and a coercivity of
2K, AL =183 mT, (20)
e N

where A, denotes the number of atoms belonging to the
particle’s core. Note that for the case of a strong surface
anisotropy [Fig. 3(b)], the mean magnetization at remanence
deviates strongly from the core anisotropy axis (parallel to e),
which is in contrast to the case of weak anisotropy [Fig. 3(a)].

poH, = 0.48

81303 V1| M, 2 8m36%, V1| M, |

gy [nm™] gy [nm™] gy [nm™]

gy [nm™']

Figure 5

8m3b3, V1| M, |?

This observation is in agreement with the analytical calcula-
tions by Garanin & Kachkachi (2003) who predicted the
emergence of an effective anisotropy of cubic symmetry for
dominant K. Therefore, with increasing K, we initially
observe in Fig. 4 an increase in the remanence. However, for
the largest K, the reduced remanence again decreases slightly
from 0.72 to 0.70. We believe that this observation is due to the
disordering effect of the surface anisotropy beyond a certain
critical K.

Fig. 5 displays the two-dimensional magnetic SANS cross
section dX,/dS2 of an ensemble of 10 nm-sized nanomagnets
in the remanent magnetization state, along with the individual
Fourier cgmggnen§*|yx 1%, M ) |> and |M i |2, and the cross term
CT=—-(M /M, + M,M,) [see equation (13)]. Fig. 6 shows the
corresponding plots at a (nearly) saturating field of By = 10 T.
We emphasize that the depicted scalar functions represent
projections of the corresponding three-dimensional quantities
onto the ¢,q, detector plane at g, = 0 (see Fig. 2). The surface

873b%,V-1CT Ay /dS2

107!

[em™]

1074

1077

Decryption of the two-dimensional magnetic SANS cross section dXy/d€2 in the remanent state (By = 0 T) into the individual magnetization Fourier
components |M, |, |My|2 and |M, |2, and CT = —(M,M_ + M ,M,) (see insets) (logarithmic colour scale). Note that the respective Fourier components
are multiplied by the constant 87° V~!b% (in order to have the same units as d X,/d$2), but not by the trigonometric functions in the expression for d Zy/
dS2 [see equation (13)]. The % values specify the fraction of the respective Fourier component of the total d¥,,/dS2 [see equation (21) and associated
discussion in the main text]. The CT (and hence the corresponding 7,) can take on negative values, but in this figure we show (due to the chosen
logarithmic colour scale) the absolute value of the CT. The data correspond to an ensemble of randomly oriented 10 nm-sized nanomagnets. The K
values for each row are (first row) K = 0, (second row) K, = 522 x 10~2* Jatom ™", (third row) K, = 26.1 x 10~> Jatom ' and (fourth row) K, =
522 x 1072 Jatom ™.
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anisotropy constant K increases from the top to the bottom
row in Figs. 5 and 6. It is seen that, generally, all the Fourier
components contribute to dX,,/dS2.

Near saturation (Fig. 6), dX,,/d€2 is dominated for all values
of K, by the isotropic (f-independent) |I\~/I z|2 Fourier compo-
nent and exhibits the characteristic sin” # anisotropy with two
maxima along the vertical direction [compare equation (13)].
Increasing K enhances the contributions of both transverse
Fourier components |]\7x|2 and |ITI y|2 and of the CT. Moreover,
the latter contributions develop a pronounced angular aniso-
tropy with increasing K.

At remanence (Fig. 5), dX\/d2 and all the Fourier
components are isotropic for small values of K and become
progressively more anisotropic with increasing K. For
instance, |1\~lz |? is initially isotropic and develops a pronounced
angular anisotropy that is elongated along the g, direction for
larger K. The CT also develops an anisotropy with increasing
K, with maxima roughly along the detector diagonals. An
anisotropic magnetic SANS cross section at zero applied
magnetic field of an ensemble of randomly oriented nano-
particles has also been found in the micromagnetic continuum
simulations of Vivas ef al. (2020). These authors did not
consider the Néel surface anisotropy but included the
magnetodipolar interaction.

81303 V1| M, 2 8m36%, V1| M, |

g, nm] g, fom] g, fnm]
(=] (==} (=]

gy [nm™']

08.1¢

Figure 6
The same as Fig. 5, but for B, = 10 T.

87304 V1| M, |

. ) . 0)
24012 244012
¢: [nm™] q: [nm™]

To quantify the fraction of the individual Fourier compo-
nents in equation (13) relative to the total magnetic SANS
cross section dXy,/dS2, we compute the following dimension-
less quantity:

2” max
o Jo™ (g, 0)gdgde
5T fimes 435y, /A2 g dg d6”

Ny = (1)

where a(q, 0) is, respectively, given by K |1\~4x|2, K |]’\V4y|2 cos? 0,
K|M_|*sin® @ and K CT sin 6 cos 6, with K = 87°b} V™", qay is
taken as 10 nm™'. The corresponding numbers are given as %
values in Figs. 5 and 6, and we note that the contribution
related to K CT sin 0 cos 6 can be positive as well as negative,
in contrast to the other three contributions which are strictly
positive. Using the inequality [M, cos — M, sin6|* > 0, it can
easily be shown that the contribution K CTsinfcosf is,
however, always smaller than the sum of the other terms (as it
must be). We emphasize that the colour-coded plots in Figs. 5
and 6 show the respective Fourier components without the
trigonometric functions in equation (13), whereas the quan-
tities 7, do contain the trigonometric terms. For K = 0 and
zero field, the contributions of |]\~4x|2, |]A\/'Iy|2 and |]A\iz|2 to dX\/
dQ2 are approximately equal (while CT = 0). This can be
understood by noting the isotropy of these functions and by

873b%,V-1CT Ay /dS
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p(r) [nm™?]

7 [nm]
Figure 7

0 2 4 6 8§ 10
r [nm)]

The effect of the surface anisotropy constant K (in units of 10~** J atom ', see inset) on (a) the azimuthally averaged magnetic SANS cross section I(g) =
(dX\/d2)(q) (log-log scale), (b) the value of the magnetic SANS cross section at the origin, /(g = 0) versus Kj, (c) the pair-distance distribution function
p(r) and (d) the correlation function ¢(r). The data correspond to the remanent state (B, = 0 T) and the nanomagnets’ diameter is 10 nm. The green
dashed line in panel (¢) displays the analytical pair-distance distribution function for the case of a uniformly magnetized spherical particle [proportional
to equation (18)], where the magnitude is normalized to the maximum value from the numerical simulation in the case K = 0.

taking into account the trigonometric terms cos? @ (for |]\~/Iy|2)
and sin” 6 (for | M, |*), which yield a factor of 1/2 on azimuthal
averaging [6 integration, compare equation (21)]. At rema-
nence, the results for the smallest nonzero K are nearly
identical to the data for K = 0 (compare Fig. 4).

The effect of increasing K on the 27 azimuthally averaged
I(q) = dX\/d2 and on p(r) and ¢(r) is shown in Fig. 7 for the
remanent state and in Fig. 8 for By = 10 T. With increasing spin
disorder (induced by an increasing K;) we observe in Fig. 7(a)
that (i) the characteristic form-factor oscillations of I(g) are
progressively damped and (ii) the extrema in I(q) shift to
larger g values due to the reduced coherent magnetic size of
the particle. Generally, in experimental situations, the
smearing of form-factor oscillations is related to the effect of a

q [nm™]

p(r) [nm~?]

Figure 8
The same as Fig. 7, but for B, = 10 T.

particle-size distribution function and/or experimental reso-
lution. Therefore, when data such as those in Fig. 7(a) are
fitted to a set of single-domain particles with a distribution of
sizes, rather than to a set of non-uniformly magnetized parti-
cles that all have the same size, an erroneous value for the
particle size may result. At (quasi)saturation [Fig. 8(c)] and for
small K at remanence [Fig. 7(c)], we recover the analytically
known expressions for I(g), p(r) and c(r) for uniformly
magnetized spherical particles [equations (15) and (18)]. We
have also plotted in Figs. 7(b) and 8(b) the K, dependence
of the g = 0 extrapolated value of /(q). The quantity /(g = 0)
is directly proportional to the static susceptibility x(g = 0)
(as it can be measured with a magnetometer), which itself
is proportional to the mean-square fluctuation of the

(b)
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magnetization per atom (Marshall & Lowde, 1968). We see
that, as expected, the increase in K has a large effect on x(0),
whereas the reduction is relatively small at 10 T. We also refer
to Fig. 10 in Appendix A, where the results for the SANS
observables are shown for the other possible sign combina-
tions of the core and surface anisotropy constants.

4.2. Effect of a particle-size distribution

In SANS experiments on nanoparticles one always has to
deal with a distribution of particle sizes and shapes. The size of
a particle has an important effect on its spin structure, e.g.
smaller particles generally tend to be nearly uniformly
magnetized (due to the dominant role of the exchange inter-
action), whereas larger particles may exhibit highly inhomo-
geneous spin structures (due to the magnetodipolar
interaction) (Vivas et al., 2020). It is therefore also of interest
to study the influence of a distribution of particle sizes on the
magnetic SANS observables [dXy,/d2, p(r), c¢(r)]. This has
been done using a log-normal probability distribution func-
tion, which is defined as (Krill & Birringer, 1998)

1

where 1 denotes the expectation value and o” is the variance,
such that

w= C]?W(D)D dD > 0, (23)
0
o’ = :fow(D) (D — )’ dD, (24)

where the corresponding median p* is determined by the
relation

B 1 * ’u2

For given values of © and o, the average magnetic SANS cross
section (...) is computed as

dzy, L dzy,
<?E?>"§: o b 26)

=1

P, denotes the probability related to the particle-size class D, =
2R, (diameter), which is computed as

w(D) = 7
[272D? In(1 4 02/ u?)] Dy+AD/2
B L /2 | W ro= [ woan. @)
P 21n(1 + 0%/ u?) ’ D,—AD/2
(dZy/dQ) [em™!] (dBy/dD) fem™] 0, (1(9)) [cm™'] 1 x107¢ {p(r)) [nm ] w(D) [nm™]
(a) — By =0T o =3 nm
5 |—Bo=10T|| 04
- 107! V|- - Analytics
|
g o . - 0.3
= » 0.2
& 10
P —B=0T 01| A%
e ol e
102 102
— B, =0T 0 =2nm
\ |—By=10T|| 0.4
101 - - Analytics
:
1074 ' P
—By=0T 0.1 .
0 o2 =201 o__*ﬂx’*__t‘%*__
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—By=0T oc=1nm
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Figure 9

The effect of a log-normal particle-size distribution function on the SANS observables (K = 52.2 x 1072 J atom™"). Shown are the two-dimensional
(dX\/d€2), the corresponding azimuthally averaged (I(q)), the pair-distance distribution functions (p(r)) and the particle-size distributions w(D) for o
values of (a) 3 nm, (b) 2 nm and (c) 1 nm. These & values correspond to [In (1 + 6?/u*)]"* values of, respectively, 0.29, 0.20 and 0.10. The nanoparticles’
mean diameter (expectation value) was chosen as ¢ = 10 nm in each case. The data correspond to the remanent (B, = 0 T) and saturated (B, = 10 T)
magnetization states. The discrete particle-size classes are defined by the particle diameters D = 3-16 nm with an equidistant step size of AD =1 nm. The
black dashed (p(r)) curves are the analytically known solutions for uniformly magnetized spheres of size ; = 10 nm in the fully saturated state.
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Fig. 9 summarizes the results obtained for the magnetic SANS that the angular anisotropy and the g dependence of (dXy/
cross section and correlation function. As expected, one d2) may be taken as an indication for distinguishing between
observes a smearing of the SANS signal with increasing  the cases of positive and negative Kj.

standard deviation o of the distribution, which becomes In contrast to our accompanying analytical study (Adams et
particularly visible in the azimuthally averaged (I(gq)) curves al.,2022), which is based on the linearization of Brown’s static
via the suppression of the form-factor oscillations. The angular equations of micromagnetics, the present numerical work

anisotropy of the SANS cross section in the remanent state, takes into account the full nonlinearity of the underlying
which can be seen as a characteristic signature of the Néel equations for the spin dynamics via the Landau-Lifshitz
surface anisotropy (compare also the lowest row in Fig. 5), equation. Therefore, the analytical approach is only valid for

becomes less pronounced for large 0. An increasing applied weak surface anisotropy, while the numerical approach
field suppresses the internal spin disorder and in this way considers surface anisotropy of arbitrary strengths. In both
increases the coherent magnetic sizes of the nanoparticles, so studies, the dipolar interaction is neglected, which is related to
that the maximum of (p(r)) shifts to larger distances. At the its mathematical complexity and the enormous numerical
same time, an increasing field also suppresses fluctuations in effort to include it in atomistic simulations of large particles.
the local magnetizations relative to the mean directions, which
then results in a reduction in the magnitude of (p(r)).

Up to this point, we have exclusively considered the case
where both anisotropy constants are positive, i.e. K. > 0 and We have studied the spin structure and magnetic neutron
K >0 (for fixed magnitudes). In Appendix A we also show the scattering signal of an ensemble of randomly oriented sphe-
results for the SANS observables for the other possible sign rical nanomagnets using the Landau-Lifshitz equation, with
combinations of the anisotropy constants. There, we can see particular focus on the Néel surface anisotropy. Taking into

5. Conclusions and outlook

@]z Ke>0 K, >0 s K.>0,K,<0 s K.<0,K, >0 s K.<0,K <0

4
102
|
10°1 =
% % % g
a0 a0 40 2
& & & 107 gy
2
1077
-2 0 2
q. [nm ] ol [nm ] s & [nm~!]
102 x10 15 % 10
@ B J
—_— . il ’
T 7,10 -~ K. <0, K, >0/ g 305 a8 -
g 100 E --K.<0,K, <0 = EAR ’
L2, g —~ ’
= Y s 30} Mol
= = 5 I / ¥
2 2 95l
1072 = 29.5
e
. © 0
1072 10° 0 10 20 0 10 200 K.>0, K.>0, K. <0, K, <0
¢ [nm™} 7 [nm] 7 [nm] K;>0, K, <0, K, >0, K, <0
Figure 10
Selected spin structures and results for the SANS observables for different signs of the anisotropy constants (see legends, |K,| =3 x 107* J atom™" and

|Ky =522 x 1072 Jatom™"). The case K. > 0 and K, > 0 from Fig. 9(c) is included for completeness. (¢) Snapshots of three-dimensional real-space
magnetization configurations (particle size 10 nm). (b) The corresponding two-dimensional (dXy,/d2). (¢) The azimuthally averaged (I(g)). (d) The pair-
distance distribution functions (p(r)). (e) The correlation functions (c(r)). (f) The value of the magnetic SANS cross section at the origin, (/(¢ = 0)). The
data in panels (b)-(f) correspond to an ensemble of randomly oriented nanoparticles with a mean diameter of ; = 10 nm and ¢ = 1 nm in a remanent
magnetization state (B, = 0 T) after prior saturation. The inset in panel (e) specifies the signs of the anisotropy constants for panels (¢)—(f).
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account the isotropic exchange interaction, an external
magnetic field, a uniaxial magnetic core anisotropy and the
Néel surface anisotropy, we compute the magnetic small-angle
neutron scattering cross section and the pair-distance distri-
bution function from the obtained equilibrium spin structures.
The numerical results are compared with the well known
analytical expressions for uniformly magnetized particles.
With increasing internal spin disorder (increasing surface
anisotropy K;), the pair-distance distribution function (at
remanence) exhibits a systematic shift of its maximum to
smaller r values and the total magnetic SANS cross section
develops a characteristic anisotropic scattering pattern. The
strength of the simulation methodology is that the field
evolution of the individual Fourier components and their
contribution to the magnetic SANS signal can be monitored.
Atomistic and micromagnetic continuum simulations have
contributed and will continue to contribute to the funda-
mental understanding of magnetic SANS.

In our future work, we will focus on the inclusion of both
the intraparticle and interparticle dipole-dipole energy and
the Dzyaloshinskii-Moriya interaction, which will give rise to
more complicated spin textures (e.g. vortex-type structures),
in particular for larger particle sizes. Moreover, it is of interest
to compare the Néel anisotropy with other phenomenological
expressions for the surface anisotropy, such as energy densities
of the type £1 K (m - n)’, where n is the normal unit vector to
the surface (instead of u;), or with the case of a truly random
surface anisotropy, where w; are random vectors. In this
regard, the present first atomistic simulations may be consid-
ered as the starting point towards a more complete description
of magnetic SANS.

The supporting information to this paper features a video
that displays the SANS observables during the magnetization-
reversal process for the case of a strong surface anisotropy.

APPENDIX A
Summary of results for different signs of the anisotropy
constants

In the main text, we have exclusively considered the case that
both anisotropy constants are positive, i.e. K. > 0 and K > 0.
Here, for completeness, we also display in Fig. 10 the results
for the SANS observables for the cases of K. > 0 and K, < 0,
K.<0and K; >0, and K. < 0 and K, < 0. By comparison with
equation (3) it is seen that changing the sign of the core
anisotropy constant K. from positive to negative changes the
orientation from easy axis to easy plane. Likewise, changing
the sign of K from positive to negative favours the m; || u;
orientation (which we term the tangential orientation) over
the m; L w; (radial) orientation. The magnitudes of the
anisotropy constants are |K | = 3 x 1072* Jatom ™" and |K,| =
522 x 107> Jatom . A log-normal particle-size distribution
function with a mean diameter of ;# = 10 nm and a width of o =
1 nm has been assumed.

It is seen in Fig. 10 that the sign change of K, has the largest
effect on the SANS observables. The surface spin structure
[Fig. 10(a)] changes from a more radial spin orientation for

K, > 0 to a more tangential orientation for K; < 0. The
corresponding angular anisotropy of the two-dimensional
(dX\/d€2) [Fig. 10(b)] changes from a horizontally elongated
(K, > 0) to a vertically elongated pattern (K, < 0). The sign
change of K also manifests in the (p(r)) and (c(r)) functions,
but the most prominent effect is seen in (I(q)) [Fig. 10(c)],
where at g = 0.8-1.4 nm ™" the functional dependency of (I(g))
is distinctly different, more shoulder-like for K, > 0 to more
peak-like for K, < 0 [see inset in Fig. 10(c)]. This feature could
be taken as an indication for distinguishing between the two
cases of K, > 0 and K < 0.
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