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A dilute ensemble of randomly oriented non-interacting spherical nanomagnets

is considered, and its magnetization structure and ensuing neutron scattering

response are investigated by numerically solving the Landau–Lifshitz equation.

Taking into account the isotropic exchange interaction, an external magnetic

field, a uniaxial magnetic anisotropy for the particle core, and in particular the

Néel surface anisotropy, the magnetic small-angle neutron scattering cross

section and pair-distance distribution function are calculated from the obtained

equilibrium spin structures. The numerical results are compared with the well

known analytical expressions for uniformly magnetized particles and provide

guidance to the experimentalist. In addition, the effect of a particle-size

distribution function is modelled.

1. Introduction

Magnetic nanoparticles are the subject of intense worldwide

research efforts which are partly motivated by potential

applications in areas such as medicine, biology and nano-

technology [see e.g. Lak et al. (2021), Diebold & Calonge

(2010), De et al. (2008), Baetke et al. (2015), Stark et al. (2015),

Han et al. (2019), Batlle et al. (2022) and references therein].

In the majority of studies, the internal spin structure of the nano-

particles is neglected and assumed to be uniform (called the

macro- or superspin model). While this is probably justified in

many application-oriented approaches in which an overall

understanding is sufficient, it is of interest, at least from the

standpoint of fundamental science, to elucidate the effect of a

non-uniform spin structure on a certain physical property.

Scattering techniques, in particular employing X-rays and

neutrons, have proved to be very powerful in this endeavour,

since they provide statistically averaged information on a large

number of scattering particles. For instance, using Monte

Carlo simulations of a discrete atomistic spin model, Köhler et

al. (2021) have numerically studied the influence of antiphase

boundaries in iron oxide nanoparticles on their spin structure.

These authors used the Debye scattering equation to relate

the internal spin disorder to the broadening of certain X-ray

Bragg peaks. Vivas et al. (2020) carried out micromagnetic

continuum calculations of the spin structure of defect-free iron

nanoparticles and related a vortex-type magnetization

configuration to certain signatures in the magnetic neutron

scattering cross section and correlation function.

Magnetic small-angle neutron scattering (SANS) is a

powerful technique for investigating spin structures on the

mesoscopic length scale (�1–100 nm) and inside the volume
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of magnetic materials (Mühlbauer et al., 2019; Michels, 2021).

Recent SANS studies of magnetic nanoparticles, in particular

employing spin-polarized neutrons, unanimously demonstrate

that their spin textures are highly complex and exhibit a

variety of non-uniform, canted or core–shell-type configura-

tions [see e.g. Disch et al. (2012), Krycka et al. (2014), Hasz et

al. (2014), Günther et al. (2014), Maurer et al. (2014), Dennis et

al. (2015), Grutter et al. (2017), Oberdick et al. (2018), Ijiri et

al. (2019), Bender et al. (2019), Bersweiler et al. (2019),

Zákutná et al. (2020), Honecker et al. (2022) and references

therein]. The analysis of magnetic SANS data relies largely on

structural form-factor models for the cross section, borrowed

from nuclear SANS, which do not properly account for the

existing spin inhomogeneity inside a magnetic nanoparticle.

Progress in magnetic SANS theory (Honecker & Michels,

2013; Michels et al., 2014; Mettus & Michels, 2015; Erokhin et

al., 2015; Metlov & Michels, 2015, 2016; Michels et al., 2016,

2019; Mistonov et al., 2019; Zaporozhets et al., 2022) strongly

suggests that, for the analysis of experimental magnetic SANS

data, the spatial nanometre-scale variation of the orientation

and magnitude of the magnetization vector field must be taken

into account, going beyond the macrospin-based models that

assume a uniform magnetization.

In this paper, we employ atomistic simulations using the

Landau–Lifshitz equation (LLE) to investigate the role of the

Néel surface anisotropy in magnetic nanoparticles and its

effect on the magnetic SANS cross section and correlation

function. We take into account the isotropic exchange inter-

action, an external magnetic field, a magnetocrystalline

anisotropy for the core of the nanoparticles and Néel aniso-

tropy for spins on the surface. The influence of a particle-size

distribution function on the magnetic SANS cross section and

pair-distance distribution function is also studied. The

numerical results reveal marked differences from the super-

spin model and provide guidance for the experimentalist to

identify non-uniform spin structures inside magnetic nano-

particles. We also refer to our accompanying analytical study

of the problem (Adams et al., 2022), which is restricted to a

linear approximation in the magnetization deviation.

The paper is organized as follows. In Section 2 we provide

information on the atomistic simulations using the LLE. In

Section 3 we display the expressions for the magnetic SANS

cross section and for the pair-distance distribution function.

The results of the numerical calculations are discussed in

Section 4, with Section 4.1 focusing on the effect of the Néel

surface anisotropy and Section 4.2 discussing the influence of a

log-normal particle-size distribution on the SANS obser-

vables. Section 5 summarizes the main findings of this study

and provides an outlook on future challenges. Appendix A

features results for the SANS observables for different sign

combinations of the anisotropy constants.

2. Details of the atomistic SANS modelling using the
Landau–Lifshitz equation

Fig. 1 shows a schematic depiction of the procedure adopted

here to generate and calculate the spin structure, and to obtain

the ensuing magnetic SANS cross section and correlation

function. This flow-chart-type representation will be discussed

in more detail below.

A spherical many-spin nanomagnet is viewed as a crystallite

consisting ofN atomic magnetic moments li = �ami , where �a

denotes the magnitude of the atomic magnetic moment andmi

is a unit vector specifying its orientation. We assume the spins

‘sit’ on a simple cubic lattice, so that �a =Msa
3, whereMs is the

saturation magnetization of the material and a is the lattice

constant. The spherical shape of the nanomagnet is cut from a

simple cubic regular grid [Fig. 1(a)] and its radius R is defined

as R ¼ ½ðN � 1Þ=2�a, where the integer N is the number of

atoms on the side of the cubic grid. The magnetic state of the

nanomagnet is investigated with the help of the atomistic

approach based on the following Hamiltonian (Dimitrov &

Wysin, 1994; Kodama & Berkovitz, 1999; Kachkachi &

Garanin, 2001a,b; Iglesias & Labarta, 2001; Kachkachi &

Dimian, 2002; Kachkachi & Garanin, 2005; Kazantseva et al.,

2008):

H ¼HEX þHZ þHA ð1Þ

¼ � J

2

X
i;j2n:n:

mi �mj � �aB0 �
XN
i¼1

mi þ
XN
i¼1

HA;i; ð2Þ

where HEX is the nearest-neighbour (n.n.) exchange energy,

J > 0 is the exchange parameter, HZ denotes the Zeeman

energy, B0 is the homogeneous externally applied magnetic

field and HA represents the magnetic anisotropy energy. For

the core spins we assume the anisotropy to be of uniaxial

symmetry, while for surface spins we adopt the model

proposed by Néel (1954). HA;i can then be expressed as

HA;i ¼
�Kc mi � eAð Þ2; i 2 core,

ðKs=2Þ
P

j2n:n: mi � uij
� �2

; i 2 surface,

(
ð3Þ

where Kc > 0 and Ks > 0 denote, respectively, the core and

surface anisotropy constants, eA is a unit vector along the core

anisotropy easy direction, and uij = (ri � rj)/kri � rjk is a unit

vector connecting the nearest-neighbour spins i and j. The

surface spins are defined as those spins which have a coordi-

nation number less than six.

The magnetodipolar interaction has been ignored in our

simulations. This is motivated by the numerical complexity of

this energy term, in particular for atomistic simulations (here,

for a 10 nm diameter particle the number of spins is N =

11 633), and by the expectation that it is of minor relevance for

smaller-sized nanomagnets (Köhler et al., 2021; Pathak &

Hertel, 2021).

The dynamics of each individual magnetic moment mi are

described by the Landau–Lifshitz equation (LLE) (Berkov,

2007),

dmi

dt
¼ ��mi � Beff

i � �mi � mi � Beff
i

� �
; ð4Þ

where � is the gyromagnetic ratio and � denotes the damping

constant. The deterministic effective magnetic field acting on

the spin i is given by
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Beff
i ¼ � 1

�a

�H
�mi

¼B0 þ
J

�a

X
j2n:n:

mj

� 1

�a

�2Kcðmi � eAÞ eA; i 2 core,

Ks

P
j2n:n:ðmi � uijÞ uij; i 2 surface.

�
ð5Þ

The LLE is solved numerically by using the explicit Euler

forward-projection method (Baňas, 2005), which consists of

two steps. The first step, as seen from equation (6) below, is the

simple Euler forward scheme, and the second step, as seen

from equation (7), is the projection (or normalization) onto

the unit sphere to enforce the constraint kmik = 1. Since we are

interested in the static equilibrium, this first-order method is

fully appropriate. In equations (6) and (7), k is the time

iteration index while i refers to the ith lattice site,

mEuler
i ¼ mk

i þ ht
dmk

i

dt
; ð6Þ

mkþ1
i ¼ mEuler

i

kmEuler
i k : ð7Þ

ht denotes the time step for the integration procedure. For the

termination of the energy minimization, we employ the

following criterion:

ht
N

XN
i¼1

dmk
i

dt

���� ����2
 !1=2

< 10�8: ð8Þ

The macroscopic state of the nanomagnet is then described by

the following super- or macrospin (representing the net

magnetic moment):

m ¼ 1

N
XN
i¼1

mi: ð9Þ

As an example, we show in Fig. 1(b) the temporal evolution of

the Cartesian magnetization components of m and in Fig. 1(c)

the numerically computed equilibrium spin configuration for a

spherical nanomagnet at zero applied field in a plane across its

centre. It is seen that the spins at the centre of the nanoparticle

are directed along m while the surface spins exhibit significant

misalignment, which is due to the presence of the Néel surface

anisotropy. Note that mi are unit vectors, whereas generally

kmk 6¼ 1.

In our simulations we use the following parameters: atomic

magnetic moment �a = 1.577 � 10�23 A m2 (corresponding to

1.7 �B with �B the Bohr magneton), lattice constant a =

0.3554 nm, Ms = �a/a
3 = 351 kA m�1, exchange constant J =

8.7 � 10�22 J atom�1, core anisotropy constant Kc = 3 �
10�24 J atom�1, damping constant � = 3 � 1011 s�1 T�1, gyro-

magnetic constant � = 1.76 � 1011 s�1 T�1 and an integration

time step of ht = 5 fs. The surface anisotropy constant Ks was
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Figure 1
A flow chart explaining the atomistic SANS simulation procedure. (a) A spherical nanoparticle is cut from a simple cubic grid withN � N � N atoms. (b)
The time evolution of the Cartesian magnetization components obtained by solving the Landau–Lifshitz equation. (c) The computed equilibrium spin
structure of a spherical nanoparticle at remanence (cut through the centre of the particle). (d) A hysteresis loop of an ensemble of randomly oriented
nanoparticles. (e) The computed Fourier transform. ( f ) The two-dimensional magnetic SANS cross section d�M/d�. (g) The azimuthally averaged
magnetic SANS cross section I(q). (h) The pair-distance distribution function p(r).
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used as an adjustable parameter. Experimental Ks values for

nanoparticles and thin films can be found in the work of

Gradmann (1986), Batlle et al. (2022) and O’Handley (2000).

A value of Ks = 5.22 � 10�21 J atom�1 has been estimated by

Kachkachi & Dimian (2002) for a 4 nm-sized face-centred

cubic cobalt particle.

For the calculation of the magnetic SANS cross section

d�M/d� [Fig. 1( f)], it is necessary to compute the discrete

Fourier transform of all the mi belonging to the spherical

nanomagnet [Fig. 1(e)]. In Section 3, the expressions for d�M/

d� are formulated for a continuous magnetization distribu-

tion M(r) and of its Fourier transform eMMðqÞ. These functions

are defined as follows:

MðrÞ ¼ 1

ð2�Þ3=2
Z eMMðqÞ exp ðiq � rÞ d3q; ð10Þ

eMMðqÞ ¼ 1

ð2�Þ3=2
Z

MðrÞ exp ð�iq � rÞ d3r: ð11Þ

Using li = �ami , the discrete-space Fourier transform is

computed as

eMMðqÞ ffi �a

ð2�Þ3=2
XN
i¼1

mi exp ð�iq � riÞ; ð12Þ

where ri is the location point of the ith spin and q represents

the wavevector (scattering vector, defined in Fig. 2). Equation

(12) establishes the relation between the outcome of the

simulations, mi , and the magnetic SANS cross section, d�M/

d�. In the standard SANS geometry, the q space of interest is

defined by q = q[0, sin�, cos�], which corresponds to the two-

dimensional detector plane (qx = 0, see Fig. 2). The two- and

one-dimensional magnetic SANS cross sections d�M/d�
[Figs. 1( f) and (g), respectively] are then computed according

to equation (13). A further Fourier transformation yields the

pair-distance distribution function [Fig. 1(h)].

At each value of the external field, atomistic simulations of

the spin structure and of the ensuing magnetic SANS cross

section were carried out for 256 random orientations of the

core anisotropy axes eA of the particle with respect to the field

B0. More specifically, once the lattice orientation has been

randomly selected, the easy-axis orientation of the particle’s

core and the distribution of the Néel anisotropy are fixed. The

whole system (core plus surface anisotropy) is then randomly

rotated relative to B0. For the generation of the random

angles, we used the low-discrepancy Sobol sequence (sob,

https://www.mathworks.com/help/stats/sobolset.html). There-

fore, except Fig. 3, all the data shown in this paper correspond

to an ensemble of randomly oriented particles. The simula-

tions were carried out by starting from a large positive

(saturating) field of about 10 T, and then the field was reduced

in steps of, typically, 30 mT.

3. Magnetic SANS cross section and pair-distance
distribution function

The quantity of interest in experimental SANS studies is the

elastic magnetic differential scattering cross section d�M/d�,

which is usually recorded on a two-dimensional position-

sensitive detector. For the most commonly used scattering

geometry in magnetic SANS experiments, where the applied

magnetic field B0 k ez is perpendicular to the wavevector k0 k
ex of the incident neutrons (see Fig. 2), d�M/d� (for un-

polarized neutrons) can be written as (Mühlbauer et al., 2019)

d�M

d�
ðqÞ ¼ 8�3

V
b2H

h
jeMMxj2 þ jeMMyj2 cos2 �

þ jeMMzj2 sin2 � � eMMy
eMM	

z þ eMM	
y
eMMz

� �
sin � cos �

i
;

ð13Þ

where V is the scattering volume, bH = 2.91 � 108 A�1 m�1 is

the magnetic scattering length in the small-angle regime (the

atomic magnetic form factor is approximated by 1 since we are

dealing with forward scattering), eMMðqÞ= ½eMMxðqÞ; eMMyðqÞ; eMMzðqÞ�
represents the Fourier transform of the magnetization vector

field M(r) = [Mx(r),My(r), Mz(r)], � denotes the angle

between q and B0, and the asterisk * stands for the complex-

conjugated quantity. Note that in the perpendicular scattering

geometry the Fourier components are evaluated in the plane

qx = 0 (see Fig. 2).

The numerically computed magnetic SANS cross sections

that are displayed in this paper correspond to the following

average:

d�M

d�
¼ d�M

d�

� 	
eA

¼ 1

K
XK
k¼1

d�M;k

d�
; ð14Þ
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Figure 2
A sketch of the neutron scattering geometry. The applied magnetic field
B0 k ez is perpendicular to the wavevector k0 k ex of the incident neutron
beam (B0 ? k0). The momentum transfer or scattering vector q is defined
as the difference between k0 and k1, i.e. q = k0 � k1. SANS is usually
implemented as elastic scattering (k0 = k1 = 2�/�) and the component of q
along the incident neutron beam, here qx , is much smaller than the other
two components, so that q ffi ½0; qy; qz� ¼ q½0; sin �; cos ��. This demon-
strates that SANS predominantly probes correlations in the plane
perpendicular to the incident beam. For elastic scattering, the magnitude
of q is given by q ¼ ð4�=�Þ sinð Þ, where � denotes the mean wavelength
of the neutrons and 2 is the scattering angle. The angle � = /(q, B0) is
used to describe the angular anisotropy of the recorded scattering pattern
on the two-dimensional position-sensitive detector.
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where d�M, k/d� represents (for fixedKs and B0) the magnetic

SANS cross section for a particular core easy-axis orientation

eA (with reference to the index ‘k’) andK denotes the number

of random configurations. Equation (14) implies the absence

of interparticle interactions.

For a uniformly magnetized spherical particle with its

saturation direction parallel to ez, i.e. Mx = My = 0 and Mz =

Ms, equation (13) reduces to

d�M

d�
ðq; �Þ ¼ Vpð�	Þ2mag 9

j1ðqRÞ
qR


 �2
sin2 �; ð15Þ

where Vp = 4�R3 /3 is the particle’s volume, ð�	Þ2mag =

b2Hð�MÞ2 = b2HM
2
s is the magnetic scattering-length density

contrast and j1(qR) is the first-order spherical Bessel function.

The well known analytical result for the homogeneous sphere

case [equation (15)] and its correlation function [see equation

(18) below] serve as a reference for comparison with the non-

uniform case.

It is often convenient to average the two-dimensional SANS

cross section (d�M/d�)(q) = (d�M/d�)(qy, qz) = (d�M/d�)(q, �)
along certain directions in q space, e.g. parallel (� = 0) or

perpendicular (� = �/2) to the applied magnetic field, or even

over the full angular � range. In the following, we consider the

2� azimuthally averaged magnetic SANS cross section,

IðqÞ 
 1

2�

Z2�
0

d�M

d�
ðq; �Þ d�; ð16Þ

which is used to compute the pair-distance distribution func-

tion p(r) according to

pðrÞ ¼ r2
R1
0

IðqÞ j0ðqrÞ q2 dq; ð17Þ

where j0ðqrÞ ¼ sinðqrÞ=ðqrÞ is the spherical Bessel function of

zero order. p(r) corresponds to the distribution of real-space

distances between volume elements inside the particle

weighted by the excess scattering-length density distribution;

see the reviews by Glatter (1982) and Svergun & Koch (2003)

for detailed discussions of the properties of p(r) and for

information on how to compute it by indirect Fourier trans-

formation (Bender et al., 2017). For our discrete simulation

data, the integrals in equations (16) and (17) were approxi-

mated by the trapezoidal rule. Apart from constant prefactors,

p(r) of the azimuthally averaged single-particle cross section

[equation (15)], corresponding to a uniform sphere magneti-

zation, is given by (for r � 2R)

pðrÞ ¼ r2 1� 3r

4R
þ r3

16R3

� 

: ð18Þ

We also display results for the correlation function c(r), which

is related to p(r) by

cðrÞ ¼ pðrÞ=r2: ð19Þ
As we will demonstrate in the following, when the particles’

spin structure is inhomogeneous, d�M/d� and the corre-

sponding p(r) and c(r) differ significantly from the homo-

geneous case [equations (15) and (18)], which serves as a

reference. Because of the r 2 factor, features in p(r) at medium

and large distances are more pronounced than those in c(r).

4. Results and discussion

4.1. Effect of the Néel surface anisotropy

Fig. 3 displays as an example the spin structures of a 5 nm-

sized spherical nanomagnet for the cases of a small and large
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Figure 4
The computed normalized magnetization mz [compare equation (9)] of
an ensemble of randomly oriented spherical nanomagnets for different
values of the surface anisotropy constant Ks (in units of 10�23 J atom�1,
see inset). The particle diameter is D = 10 nm and the remanence values
are indicated in the inset.

Figure 3
Selected 3D equilibrium spin structures arising from the Néel surface
anisotropy [compare also with Figs. 2 and 3 in the accompanying
analytical study (Adams et al., 2022)]. (a) Ks = 5.22 � 10�23 J atom�1 and
(b) Ks = 52.2 � 10�23 J atom�1. Further parameters are core-anisotropy
axis eA = [0, 0, 1], core-anisotropy constant Kc = 3 � 10�24 J atom�1 and
external magnetic field B0 = [0, 0, 150 mT]. The particle diameter is D =
5 nm. The colour code depicts the spin misalignment relative to the
average magnetization vector, namely �mj = kmj �m=kmkk. At the
surface of the nanomagnet the spin deviations are larger than those in the
core.
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surface anisotropy constant Ks, and Fig. 4 shows computed

hysteresis curves for an ensemble of randomly oriented 10 nm-

sized nanomagnets. As expected, increasing Ks results, for a

given particle size, in a progressive surface spin disorder which

propagates into the bulk of the nanomagnet. The effect of an

enhanced Ks also becomes visible in the magnetization curves

via an increased coercivity Hc and remanence mr . For Ks = 0

and dominant exchange, we recover the well known results

from the Stoner–Wohlfarth model (Usov & Peschany, 1997),

i.e.we find a reduced remanence ofmr = 0.5 and a coercivity of

�0Hc ¼ 0:48
2Kc

�a

N c

N ¼ 183mT; ð20Þ

where N c denotes the number of atoms belonging to the

particle’s core. Note that for the case of a strong surface

anisotropy [Fig. 3(b)], the mean magnetization at remanence

deviates strongly from the core anisotropy axis (parallel to ez),

which is in contrast to the case of weak anisotropy [Fig. 3(a)].

This observation is in agreement with the analytical calcula-

tions by Garanin & Kachkachi (2003) who predicted the

emergence of an effective anisotropy of cubic symmetry for

dominant Ks. Therefore, with increasing Ks we initially

observe in Fig. 4 an increase in the remanence. However, for

the largest Ks, the reduced remanence again decreases slightly

from 0.72 to 0.70. We believe that this observation is due to the

disordering effect of the surface anisotropy beyond a certain

critical Ks.

Fig. 5 displays the two-dimensional magnetic SANS cross

section d�M/d� of an ensemble of 10 nm-sized nanomagnets

in the remanent magnetization state, along with the individual

Fourier components jeMMxj2, jeMMyj2 and jeMMzj2, and the cross term
CT = �ðeMMy

eMM	
z þ eMM	

y
eMMzÞ [see equation (13)]. Fig. 6 shows the

corresponding plots at a (nearly) saturating field of B0 = 10 T.

We emphasize that the depicted scalar functions represent

projections of the corresponding three-dimensional quantities

onto the qyqz detector plane at qx = 0 (see Fig. 2). The surface
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Figure 5
Decryption of the two-dimensional magnetic SANS cross section d�M/d� in the remanent state (B0 = 0 T) into the individual magnetization Fourier
components jeMMxj2, jeMMyj2 and jeMMzj2, and CT = �ðeMMy

eMM	
z þ eMM	

y
eMMzÞ (see insets) (logarithmic colour scale). Note that the respective Fourier components

are multiplied by the constant 8�3V�1b2H (in order to have the same units as d�M/d�), but not by the trigonometric functions in the expression for d�M/
d� [see equation (13)]. The % values specify the fraction of the respective Fourier component of the total d�M/d� [see equation (21) and associated
discussion in the main text]. The CT (and hence the corresponding 
�) can take on negative values, but in this figure we show (due to the chosen
logarithmic colour scale) the absolute value of the CT. The data correspond to an ensemble of randomly oriented 10 nm-sized nanomagnets. The Ks

values for each row are (first row) Ks = 0, (second row) Ks = 5.22 � 10�23 J atom�1, (third row) Ks = 26.1 � 10�23 J atom�1 and (fourth row) Ks =
52.2 � 10�23 J atom�1.
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anisotropy constant Ks increases from the top to the bottom

row in Figs. 5 and 6. It is seen that, generally, all the Fourier

components contribute to d�M/d�.

Near saturation (Fig. 6), d�M/d� is dominated for all values

of Ks by the isotropic (�-independent) jeMMzj2 Fourier compo-

nent and exhibits the characteristic sin2 � anisotropy with two

maxima along the vertical direction [compare equation (13)].

Increasing Ks enhances the contributions of both transverse

Fourier components jeMMxj2 and jeMMyj2 and of the CT. Moreover,

the latter contributions develop a pronounced angular aniso-

tropy with increasing Ks.

At remanence (Fig. 5), d�M/d� and all the Fourier

components are isotropic for small values of Ks and become

progressively more anisotropic with increasing Ks. For

instance, jeMMzj2 is initially isotropic and develops a pronounced
angular anisotropy that is elongated along the qy direction for

larger Ks. The CT also develops an anisotropy with increasing

Ks, with maxima roughly along the detector diagonals. An

anisotropic magnetic SANS cross section at zero applied

magnetic field of an ensemble of randomly oriented nano-

particles has also been found in the micromagnetic continuum

simulations of Vivas et al. (2020). These authors did not

consider the Néel surface anisotropy but included the

magnetodipolar interaction.

To quantify the fraction of the individual Fourier compo-

nents in equation (13) relative to the total magnetic SANS

cross section d�M/d�, we compute the following dimension-

less quantity:


� ¼
R 2�

0

R qmax

0 �ðq; �Þ q dq d�R 2�

0

R qmax

0 d�M=d� q dq d�
; ð21Þ

where �(q, �) is, respectively, given by KjeMMxj2, KjeMMyj2 cos2 �,
KjeMMzj2 sin2 � and KCT sin � cos �, with K ¼ 8�3b2HV

�1. qmax is

taken as 10 nm�1. The corresponding numbers are given as %

values in Figs. 5 and 6, and we note that the contribution

related to KCT sin � cos � can be positive as well as negative,

in contrast to the other three contributions which are strictly

positive. Using the inequality jeMMy cos � � eMMz sin �j2 � 0, it can

easily be shown that the contribution KCT sin � cos � is,

however, always smaller than the sum of the other terms (as it

must be). We emphasize that the colour-coded plots in Figs. 5

and 6 show the respective Fourier components without the

trigonometric functions in equation (13), whereas the quan-

tities 
� do contain the trigonometric terms. For Ks = 0 and

zero field, the contributions of jeMMxj2, jeMMyj2 and jeMMzj2 to d�M/

d� are approximately equal (while CT = 0). This can be

understood by noting the isotropy of these functions and by
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Figure 6
The same as Fig. 5, but for B0 = 10 T.
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taking into account the trigonometric terms cos2 � (for jeMMyj2)
and sin2 � (for jeMMzj2), which yield a factor of 1/2 on azimuthal

averaging [� integration, compare equation (21)]. At rema-

nence, the results for the smallest nonzero Ks are nearly

identical to the data for Ks = 0 (compare Fig. 4).

The effect of increasing Ks on the 2� azimuthally averaged

I(q) = d�M/d� and on p(r) and c(r) is shown in Fig. 7 for the

remanent state and in Fig. 8 for B0 = 10 T. With increasing spin

disorder (induced by an increasing Ks) we observe in Fig. 7(a)

that (i) the characteristic form-factor oscillations of I(q) are

progressively damped and (ii) the extrema in I(q) shift to

larger q values due to the reduced coherent magnetic size of

the particle. Generally, in experimental situations, the

smearing of form-factor oscillations is related to the effect of a

particle-size distribution function and/or experimental reso-

lution. Therefore, when data such as those in Fig. 7(a) are

fitted to a set of single-domain particles with a distribution of

sizes, rather than to a set of non-uniformly magnetized parti-

cles that all have the same size, an erroneous value for the

particle size may result. At (quasi)saturation [Fig. 8(c)] and for

small Ks at remanence [Fig. 7(c)], we recover the analytically

known expressions for I(q), p(r) and c(r) for uniformly

magnetized spherical particles [equations (15) and (18)]. We

have also plotted in Figs. 7(b) and 8(b) the Ks dependence

of the q = 0 extrapolated value of I(q). The quantity I(q = 0)

is directly proportional to the static susceptibility �(q = 0)

(as it can be measured with a magnetometer), which itself

is proportional to the mean-square fluctuation of the
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Figure 7
The effect of the surface anisotropy constantKs (in units of 10

�23 J atom�1, see inset) on (a) the azimuthally averaged magnetic SANS cross section I(q) =
(d�M/d�)(q) (log–log scale), (b) the value of the magnetic SANS cross section at the origin, I(q = 0) versusKs, (c) the pair-distance distribution function
p(r) and (d) the correlation function c(r). The data correspond to the remanent state (B0 = 0 T) and the nanomagnets’ diameter is 10 nm. The green
dashed line in panel (c) displays the analytical pair-distance distribution function for the case of a uniformly magnetized spherical particle [proportional
to equation (18)], where the magnitude is normalized to the maximum value from the numerical simulation in the case Ks = 0.

Figure 8
The same as Fig. 7, but for B0 = 10 T.

electronic reprint



magnetization per atom (Marshall & Lowde, 1968). We see

that, as expected, the increase in Ks has a large effect on �(0),
whereas the reduction is relatively small at 10 T. We also refer

to Fig. 10 in Appendix A, where the results for the SANS

observables are shown for the other possible sign combina-

tions of the core and surface anisotropy constants.

4.2. Effect of a particle-size distribution

In SANS experiments on nanoparticles one always has to

deal with a distribution of particle sizes and shapes. The size of

a particle has an important effect on its spin structure, e.g.

smaller particles generally tend to be nearly uniformly

magnetized (due to the dominant role of the exchange inter-

action), whereas larger particles may exhibit highly inhomo-

geneous spin structures (due to the magnetodipolar

interaction) (Vivas et al., 2020). It is therefore also of interest

to study the influence of a distribution of particle sizes on the

magnetic SANS observables [d�M/d�, p(r), c(r)]. This has

been done using a log-normal probability distribution func-

tion, which is defined as (Krill & Birringer, 1998)

wðDÞ ¼ 1

2�D2 lnð1þ �2=�2Þ½ �1=2

� exp � ln2½ðD=�Þð1þ �2=�2Þ1=2�
2 lnð1þ �2=�2Þ

� �
; ð22Þ

where � denotes the expectation value and �2 is the variance,
such that

� ¼ R1
0

wðDÞD dD > 0; ð23Þ

�2 ¼ R1
0

wðDÞ ðD� �Þ2 dD; ð24Þ

where the corresponding median �	 is determined by the

relation R�	

0

wðDÞ dD ¼ 1
2 ; �	 ¼ �2

�2 þ �2ð Þ1=2 : ð25Þ

For given values of � and �, the average magnetic SANS cross

section h . . . i is computed as

d�M

d�

� 	
¼
XL
‘¼1

d�M;‘

d�
P‘: ð26Þ

P‘ denotes the probability related to the particle-size classD‘ =

2R‘ (diameter), which is computed as

P‘ ¼
ZD‘þ�D=2

D‘��D=2

wðDÞ dD: ð27Þ
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Figure 9
The effect of a log–normal particle-size distribution function on the SANS observables (Ks = 52.2 � 10�23 J atom�1). Shown are the two-dimensional
hd�M/d�i, the corresponding azimuthally averaged hI(q)i, the pair-distance distribution functions hp(r)i and the particle-size distributions w(D) for �
values of (a) 3 nm, (b) 2 nm and (c) 1 nm. These � values correspond to [ln (1 + �2/�2)]1/2 values of, respectively, 0.29, 0.20 and 0.10. The nanoparticles’
mean diameter (expectation value) was chosen as � = 10 nm in each case. The data correspond to the remanent (B0 = 0 T) and saturated (B0 = 10 T)
magnetization states. The discrete particle-size classes are defined by the particle diametersD = 3–16 nm with an equidistant step size of�D = 1 nm. The
black dashed hp(r)i curves are the analytically known solutions for uniformly magnetized spheres of size � = 10 nm in the fully saturated state.
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Fig. 9 summarizes the results obtained for the magnetic SANS

cross section and correlation function. As expected, one

observes a smearing of the SANS signal with increasing

standard deviation � of the distribution, which becomes

particularly visible in the azimuthally averaged hI(q)i curves
via the suppression of the form-factor oscillations. The angular

anisotropy of the SANS cross section in the remanent state,

which can be seen as a characteristic signature of the Néel

surface anisotropy (compare also the lowest row in Fig. 5),

becomes less pronounced for large �. An increasing applied

field suppresses the internal spin disorder and in this way

increases the coherent magnetic sizes of the nanoparticles, so

that the maximum of hp(r)i shifts to larger distances. At the

same time, an increasing field also suppresses fluctuations in

the local magnetizations relative to the mean directions, which

then results in a reduction in the magnitude of hp(r)i.
Up to this point, we have exclusively considered the case

where both anisotropy constants are positive, i.e. Kc > 0 and

Ks > 0 (for fixed magnitudes). In AppendixA we also show the

results for the SANS observables for the other possible sign

combinations of the anisotropy constants. There, we can see

that the angular anisotropy and the q dependence of hd�M/

d�i may be taken as an indication for distinguishing between

the cases of positive and negative Ks.

In contrast to our accompanying analytical study (Adams et

al., 2022), which is based on the linearization of Brown’s static

equations of micromagnetics, the present numerical work

takes into account the full nonlinearity of the underlying

equations for the spin dynamics via the Landau–Lifshitz

equation. Therefore, the analytical approach is only valid for

weak surface anisotropy, while the numerical approach

considers surface anisotropy of arbitrary strengths. In both

studies, the dipolar interaction is neglected, which is related to

its mathematical complexity and the enormous numerical

effort to include it in atomistic simulations of large particles.

5. Conclusions and outlook

We have studied the spin structure and magnetic neutron

scattering signal of an ensemble of randomly oriented sphe-

rical nanomagnets using the Landau–Lifshitz equation, with

particular focus on the Néel surface anisotropy. Taking into
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Figure 10
Selected spin structures and results for the SANS observables for different signs of the anisotropy constants (see legends, |Kc| = 3 � 10�24 J atom�1 and
|Ks| = 52.2 � 10�23 J atom�1). The case Kc > 0 and Ks > 0 from Fig. 9(c) is included for completeness. (a) Snapshots of three-dimensional real-space
magnetization configurations (particle size 10 nm). (b) The corresponding two-dimensional hd�M/d�i. (c) The azimuthally averaged hI(q)i. (d) The pair-
distance distribution functions hp(r)i. (e) The correlation functions hc(r)i. ( f ) The value of the magnetic SANS cross section at the origin, hI(q = 0)i. The
data in panels (b)–( f ) correspond to an ensemble of randomly oriented nanoparticles with a mean diameter of � = 10 nm and � = 1 nm in a remanent
magnetization state (B0 = 0 T) after prior saturation. The inset in panel (e) specifies the signs of the anisotropy constants for panels (c)–( f ).
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account the isotropic exchange interaction, an external

magnetic field, a uniaxial magnetic core anisotropy and the

Néel surface anisotropy, we compute the magnetic small-angle

neutron scattering cross section and the pair-distance distri-

bution function from the obtained equilibrium spin structures.

The numerical results are compared with the well known

analytical expressions for uniformly magnetized particles.

With increasing internal spin disorder (increasing surface

anisotropy Ks), the pair-distance distribution function (at

remanence) exhibits a systematic shift of its maximum to

smaller r values and the total magnetic SANS cross section

develops a characteristic anisotropic scattering pattern. The

strength of the simulation methodology is that the field

evolution of the individual Fourier components and their

contribution to the magnetic SANS signal can be monitored.

Atomistic and micromagnetic continuum simulations have

contributed and will continue to contribute to the funda-

mental understanding of magnetic SANS.

In our future work, we will focus on the inclusion of both

the intraparticle and interparticle dipole–dipole energy and

the Dzyaloshinskii–Moriya interaction, which will give rise to

more complicated spin textures (e.g. vortex-type structures),

in particular for larger particle sizes. Moreover, it is of interest

to compare the Néel anisotropy with other phenomenological

expressions for the surface anisotropy, such as energy densities

of the type 
 1
2Ksðm � nÞ2, where n is the normal unit vector to

the surface (instead of uij), or with the case of a truly random

surface anisotropy, where uij are random vectors. In this

regard, the present first atomistic simulations may be consid-

ered as the starting point towards a more complete description

of magnetic SANS.

The supporting information to this paper features a video

that displays the SANS observables during the magnetization-

reversal process for the case of a strong surface anisotropy.

APPENDIX A
Summary of results for different signs of the anisotropy
constants

In the main text, we have exclusively considered the case that

both anisotropy constants are positive, i.e. Kc > 0 and Ks > 0.

Here, for completeness, we also display in Fig. 10 the results

for the SANS observables for the cases of Kc > 0 and Ks < 0,

Kc < 0 and Ks > 0, and Kc < 0 and Ks < 0. By comparison with

equation (3) it is seen that changing the sign of the core

anisotropy constant Kc from positive to negative changes the

orientation from easy axis to easy plane. Likewise, changing

the sign of Ks from positive to negative favours the mi k uij
orientation (which we term the tangential orientation) over

the mi ? uij (radial) orientation. The magnitudes of the

anisotropy constants are |Kc| = 3 � 10�24 J atom�1 and |Ks| =

52.2 � 10�23 J atom�1. A log-normal particle-size distribution

function with a mean diameter of � = 10 nm and a width of � =
1 nm has been assumed.

It is seen in Fig. 10 that the sign change of Ks has the largest

effect on the SANS observables. The surface spin structure

[Fig. 10(a)] changes from a more radial spin orientation for

Ks > 0 to a more tangential orientation for Ks < 0. The

corresponding angular anisotropy of the two-dimensional

hd�M/d�i [Fig. 10(b)] changes from a horizontally elongated

(Ks > 0) to a vertically elongated pattern (Ks < 0). The sign

change of Ks also manifests in the hp(r)i and hc(r)i functions,
but the most prominent effect is seen in hI(q)i [Fig. 10(c)],

where at qffi 0.8–1.4 nm�1 the functional dependency of hI(q)i
is distinctly different, more shoulder-like for Ks > 0 to more

peak-like for Ks < 0 [see inset in Fig. 10(c)]. This feature could

be taken as an indication for distinguishing between the two

cases of Ks > 0 and Ks < 0.
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