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Abstract
Weconsider a single spherical nanomagnet and investigate the spatialmagnetization profile ( )m r in
the continuum approach, using theGreenʼs function formalism. The energy of the (many-spin)
nanomagnet comprises an isotropic exchange interaction, a uniaxial anisotropy in the core andNéelʼs
surface anisotropy, and an externalmagnetic field.We derive a semi-analytical expression for the
magnetization vector field ( )m r for an arbitrary position rwithin and on the boundary of the
nanomagnet, as a solution of a homogeneousHelmholtz equationwith inhomogeneousNeumann
boundary conditions. In the absence of core anisotropy, we use the solution of this boundary problem
and infer approximate analytical expressions for the componentsmα,α= x, y, z, as a function of the
radial distance r and the direction solid angle. Then, we study the effects of the nanomagnetʼs size and
surface anisotropy on the spatial behavior of the netmagneticmoment. In the presence of a core
anisotropy, an approximate analytical solution is only available for a position r located on the surface,
i.e. r= Rn, whereR is the radius of the nanomagnet andn the verse of the normal to the surface. This
solution yields themaximum spin deviation as a result of the competition between the uniaxial core
anisotropy andNéelʼs surface anisotropy. Alongwith these (semi-)analytical calculations, we have
solved a systemof coupled Landau–Lifshitz equationswritten for the atomic spins, and compared the
results with theGreenʼs function approach. For a plausible comparisonwith experiments, e.g. using
the technique of small-anglemagnetic neutron scattering, we have averaged over the direction solid
angle and derived the spatial profile in terms of the distance r.We believe that the predictions of the
present study could help to characterize and understand the effects of size and surface anisotropy on
themagnetization configurations in nanomagnet assemblies such as arrays of well-spaced platelets.

1. Introduction

Whyhas studying nanoscaled systems suddenly become so important?How can amaterial that is so small be so
influential as to trigger a tremendous research activity worldwide? To understand the power of nanomaterials,
we need to understand howmaterials work at the very small scale.When the dimensions of the system are
reduced down to the nanoscale, the first big change is the larger proportion of atoms at its surface, and this leads
to a dramatic change in the chemical and physical properties. For example, bulk gold is an inertmetal that does
not reactmuch and thus does not rust, whereas at the nanoscale, it works as a catalyst. A nanoparticle of gold
about 90 nm in size absorbs red and yellow light from the color spectrum,making the nanoparticle appear blue
or green [1]. However, the same nanoparticle that is only 30 nm in size, absorbs blue and green light, and so
appears red. Today, we know that this is so because the optical properties ofmetal nanoparticles are dominated
by the surface plasmon resonances for both absorption and scattering of light [2]. At the bottom end of the
nanoscale, quantumphenomena start to emerge through a transition from the electronic-band structure to
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discrete energy levels [3]. This fundamentally alters thematerial properties and leads tomany newphenomena
[4], such as the energy gap and excitonic absorption of light, unique catalytic activity, and single-electron
magnetism. In addition to the electronic structure alteration, the crystal structure also starts to exhibit significant
changes with respect to the bulkmaterial.

The reduction of the size and the entailed changes in the electronic and crystal structure fundamentally alter
themagnetic properties as well. As the size reduces to the nanometer, themagnetic system, nowadays called a
nanomagnet, exhibits a newphenomenon known as superparamagnetism [5, 6]with a change in the relevant
temperature by an order ofmagnitude and in the relaxation time by several orders ofmagnitude. Furthermore,
the large surface contribution in nanoscaledmagnetic systems leads to inhomogeneous atomic-spin
configurations [see [7–11] and references therein] and thereby to a drastically different behavior in response to
external stimuli. For example, newmodes ofmagnetization switching play a crucial role inmany new spintronic
applications [12]. Likewise, these surface-induced effects strongly affect the relaxation processes owing to amore
complex potential energy and new excitationmodes [13, 14].

Therefore, in order to understand andmaster the newmagnetic properties of nano-elements, in view of
efficient practical applications, it is essential to probe the novel features induced by their surfaces and interfaces.
In particular, it is crucial to investigate the atomic-spin configurationswithin the nanomagnets and characterize
the spatial profile of theirmagnetization. In this work, we present a study of the latter within spherical
nanomagnets using the technique ofGreenʼs functions (GF). This is part of a broaderwork thatmakes use of
complementary techniques with the aim to better characterize surface-induced spin noncollineartities and their
effects on the equilibrium and dynamic behaviors of assemblies of nanomagnets. In this context, the present
work provides a general formalism that renders fairly precise and useful analytical expressions of the spatial
magnetization profile, clearly presenting all the involvedmathematical steps and approximations. As a
byproduct, it confirms and elaborates on the conclusions reached by previousworks regarding the effects of
surface anisotropy in nanomagnets.

When averaged over the solid angle, the spatialmagnetization profilemay be comparedwith experiments,
such asmagnetic small-angle neutron scattering (SANS)[15] in assemblies of nanomagnets. Indeed, the present
formalism constitutes a basis for computing themagnetic SANS cross-section of nanomagnets as a function of
their various physical parameters. Accordingly, in a recent study [16, 17], we investigated the signature of
surface-induced spinmisalignments in the SANS cross section upon varying the appliedmagnetic field and the
nanomagnet energy parameters.

Plan of the article: After an introduction, in section 2, we present ourmodel for a nanomagnet, viewed as a
crystallite of  atomicmagneticmoments and then describe the continuumapproach for studying the spatial
profile of itsmagnetization. In section 3, we use theGreenʼs function technique to obtain the spin deviation
vector in terms of surface anisotropy, in addition to other parameters, bothwith andwithout the anisotropy in
the core.We plot themagnetization profile in the radial direction and study its behavior aswe vary the size of the
nanomagnet and the anisotropy constants. The results from theGreenʼs function formalism are also compared
to the numerical calculations based on the solution of the systemof coupled Landau–Lifshitz equations. Finally,
in section 4, we summarize themain results of this work and discuss the possibility of experimentally
investigating the surface-induced spin-misalignments, e.g. by SANS technique. The paper endswith an
Appendix.

2.Many-spin nanomagnet

2.1.Discrete lattice
Amany-spin nanomagnet (NM) is viewed as a crystallite of  atomicmagneticmomentsμi= μami

(  =m 1i )withμa=Msv0, whereMs is the saturationmagnetization and v0 is the volume of the unit cell of the
underlying lattice. Themagnetic state of theNMmay be investigatedwith the help of the atomistic approach
based on the anisotropic (classical)Dirac-HeisenbergHamiltonian [7, 18–25]
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whereexc is the (nearest-neighbor) exchange energy,Z the Zeeman contribution and º å =i ian 1 an, the
anisotropy energywith ( ) = -K mi i ian, , being the anisotropy contribution of each spin on site i; ( ) mi is
the anisotropy function that depends on the locus of the atomic spin si. So, for core spins, the anisotropymay be
uniaxial and/or cubic, while for surface spins there are a fewmodels for on-site anisotropy that is very often
taken as uniaxial with either a transverse or parallel easy axis. There is also themore plausiblemodel proposed by
Néel [26] for which ( ) ( · ) = å =m m ui j
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vector connecting the nearest neighbors i, j. The constantKi> 0 is usually denoted byKc if the site i is in the core
and byKs if it is on the boundary.

Therefore, in the sequel wewill refer to theNéel Surface Anisotropy (NSA)model and thismeans thatwe
consider a uniaxial anisotropy in the corewith easy axis (whose verse is the unit vector eA) andNéelʼs on-site
anisotropy for spins on the surface.More precisely, in theNSAmodel we adopt the following anisotropy energy
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Themacroscopic state of theNMmay be described usingwhat is often called the superspin ormacrospin, that
is the netmagneticmoment
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The dynamics of themagneticmomentsmi is governed by the (damped) Landau–Lifshitz equation (LLE) or,
more precisely, the systemof coupled Landau–Lifshitz equationswritten for the atomicmagneticmomentsmi

( = ¼i 1, 2, , ),
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with the (normalized) local effective fieldheff,i, acting on si, being defined by d d= -h si ieff, . τ is the reduced
time given by τ= t/τs, where ( )t m g= Jas is a characteristic time of the systemʼs dynamics; γ; 1.76× 1011

(Ts)−1 is the gyromagnetic ratio andα the damping parameter (∼0.01− 0.1). For example, for cobalt J= 8 meV
and τs= 70 fs. In these units,heff,i= μaHeff,i/J, where ( )( )m d d= -H m1i a i

eff is the deterministic field that
comprises the exchange field, themagneticfieldHext and the anisotropy fieldHA.

The spin configuration shown infigure 1, with the netmagneticmoment along the diagonal, is obtained by
(numerically)minimizing the energy (1) by solving the systemof coupled Landau–Lifshitz equations (4) [7, 23,
27–30]. This is a typical spin structure that is induced by theNSA in a spherical NM.Note that the atomic
magneticmomentsmi progressively deviate from the global orientation (here the diagonal) as the site i is located
closer to theNMborder and away from the diagonal.

Orders ofmagnitude ofmaterials parameters: Let us now give a few orders ofmagnitude of the physical
parameters that appear in theHamiltonian (1). First of all, we note that equation (1) is the energy per atom,
obtained by dividing the total energy of the systemby  , the number of atoms in theNM.Hence, the physical
parameters involved, namely J,K and ( )m m Ha 0 , aremeasured in Joule per atom. For instance, the anisotropy
energy, which is oftenwritten as K̃V whereV is the volume of theNMand K̃ the density of anisotropy energy
(in J/m3), becomes ˜ ˜ = ºKV v K K0 . Similarly, the Zeeman contributionwhich usually readsμ0HM is now

Figure 1.Magnetic structure of a spherical nanoparticle of linear sizeN = 20, showing atoms in the plane z = 0.

3
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rewritten as ( )m m m=HM Ha0 0 .3 In theNSAmodel, we distinguish between the core (full coordination) and
surface atoms (with smaller coordination). As such, the anisotropy constantKc applies only to atoms in the core
of theNMandKs only to those on its surface. For instance, for cobalt, themagneticmoment per atom
μa= n0μB, with n0 being the number of Bohrmagnetons per atom (n0; 1.7) andμB= 9.274× 10−24 J/T is the
Bohrmagneton.Hence,μa; 1.58× 10−23 J/T.Next, themagneto-crystalline anisotropy constant is roughly
Kc; 3× 10−24 J/atom, the surface anisotropy constant is aroundKs; 5.22× 10−23 Joule/atom and the (bulk)
exchange coupling is J; 8 mev or 1.2834× 10−21 J/atom. The lattice parameter is a=0.3554nm.As such,
kc≡ Kc/J; 0.00234while ks≡ Ks/J; 0.04. The latter value is within the range of values estimated by several
experimental studies. Indeed, onemay findKs/J; 0.1 for cobalt [31],Ks/J; 0.06 for iron [32], andKs/J; 0.04
formaghemite particles [33].

2.2. Continuumapproach
In the continuum approach, themagnetic configuration of a system is described by the continuous
magnetization vector field ( )M r constrained to a constant normMs. The relation between the discrete and
continuous descriptions is [34]

( ) ( )å m= vM r 5
i

i 0

whereμi is the discretemagneticmoment of the ith ion belonging to a given sub-lattice. The summation is
carried over all sites in a physically small volume v0, around a point whose position is r= (x, y, z), andwithin
which themomentsμi are assumed to be uniform. The normalizedmagnetization density vector field is then
defined by

( ) ( ) ( )º Mm r M r . 6s

In the continuum limit, the exchange interaction is written in terms of the exchange stiffnessA (e.g. about
3.6 pJ/mfor cobalt) as an integral over the volumeV of theNM
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For a simple cubic lattice, we have the relation between J andA:A= J/2a, with a being the lattice constant.
This is the classical analog of the relation that applies to a simple cubic lattice of quantum spins, = á ñA J S a22 .

Using the identity · ( · ) ( )  = D + a a a a am m m m m 2 and the divergence theorem, the exchange
energy can split into a core and a surface contribution, namely
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Next, the Zeeman term reads,
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Z ext
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and the anisotropy energy for core spins becomes
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Note thatVin/v0, with v0= a3, is equal to the number of core atoms thatwe denote byNc, so that
VinKc/v0=NcKc. Regarding surface anisotropy, it was shown in [27] that the corresponding energy in theNSA
model can be replaced by the approximate expression for a sphere [see [35] for a cube]
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wheren is the unit vector of the normal to the surface (the boundary∂V of theNM). Then, in the continuum
limit,surface becomes
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Therefore, collecting all contributions, the nanomagnetʼsHamiltonian in equation (1) becomes in the
continuumapproach

3
Themagnetic fieldH in (1), and all subsequent equations, should be understood asμ0Hwhich ismeasured in Tesla, so that the Zeeman

term ( )m m Ha 0 ismeasured in J/atom.
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In the case of small spin-misalignment, where themagnetization density ( )m r slightly deviates from the
homogeneousmagnetization statem0 [see figure 1], a perturbation approach is applicable. Accordingly,m0 is
considered as the principal unit vector4 associatedwithm(r)while the spin-misalignment is encoded in the
vector field ( )y r with ( )y ^r m0. Therefore, wewrite [36, 37]

( ) ( ) ( ) ( ) y y= - +m r m r r1 , 120
2

withm0 ·ψ= 0 and thereby ∣ ( )∣ =m r 1, togetherwith the condition (discussed later in the text)

( ) ( )ò y =d r r 0. 13
V

3

Assuming thatψα= 1,α= x, y, z, an approximate closed-form solution for the normalizedmagnetization
density can be obtained by performing the second-order expansion of equation equation (12)with respect toψ :
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0

Next, one can rewrite theHamiltonian (11)using a perturbation approach andminimizingwith respect to
theCartesian componentsψx,ψy,ψz, leading to a homogeneous (vector)Helmholtz equation for these
components, togetherwith inhomogeneousNeumann boundary conditions.However, owing to the transverse
character ofψ (m0 ·ψ= 0), it ismore convenient towork in the local frame attached tom0, i.e. ( )m u u, ,0 1 2 ,
whereu1 andu2 are the following two unit vectors [37]
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In the new frame, we have
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2
2. Consequently, with the help of a linear transformation, the problem is readily reduced

to the following systemof decoupled homogeneous scalar (dimensionless)Helmholtz equations
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alongwith the inhomogeneousNeumann boundary conditions
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Herewe have introduced the dimensionless coordinates ξ= r/R, whereR is theNMradius, togetherwith the
followingHelmholtz coefficientsκβ,β= 1, 2, given by
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withD= 2R being the diameter of theNM, kc≡ Kc/J and ks≡ Ks/J the (dimensionless) reduced anisotropy
constants introduced earlier, and hext≡ μaHext/J the reducedmagnetic field.

For later use and simplicity of notation, we introduce the surface anisotropy field
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y
x

S ºb
b

x=

m n,
d

d
. 210

1

4
In all subsequent formulae,m0 is considered as a known uniform vector field.
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In the case of a core anisotropy easy axis in the zdirection, eA= ez,
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3.Magnetization profile: Greenʼs function approach

To solve the homogeneousHelmholtz equation (17) forψβ, with the inhomogeneousNeumann boundary
conditions (18), a specified gradient on the surface, we use theGreenʼs function (GF) approach [38–40]. TheGF

( ) x x¢b , for this problem satisfies the equation

[ ] ( ) ( ) ( ) x x x xk pdD - ¢ = - - ¢x b b , 4 , 242

andmay be chosen to satisfy the homogeneous boundary condition of the same type asψβ, i.e. Neumann
boundary conditions,
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In this case, we have the solution [27, 38–40]
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is the outward normal gradient

ofψβ at the surface of theNM,with ( )q j q j q=n sin cos , sin sin , cos and q q j= W =d n d d dsin2 .
The result in equation (26) simply reflects the fact that the source of spinmis-alignmentψβwithin theNM

spin configuration is induced by surface anisotropy via the fieldS =
x

b
y

x =

b

n

d

d
given in equation (18). As

discussed in [27], the spinmis-alignment (or disorder) initiated at the surface of theNMpropagates into the
body of the latter down to its center. In this case, the contribution of surface anisotropy to the overall anisotropy
of theNMscales with its volume (N3). In the presence of uniaxial anisotropy in the core, the surface spin
disorder is screened out at a certain distance from the center and the contribution of the surface to the overall
anisotropy then scales as the surface (N2) [see section 3.2 for further discussion].

3.1. No core anisotropy
In the absence of core anisotropy (Kc= 0) andmagnetic field, k k= = 01

2
2
2 (see equation (19)), the vectorm0 is

along the cube diagonal, i.e. =am 1 30, . Then, equation (17) reduces to the Laplace equationΔψβ= 0,
subjected again to the inhomogeneousNeumann boundary conditions (18). The correspondingGF ( )( ) x x¢,0

satisfies the Poisson equation

( ) ( ) ( )( ) x x x xpdD ¢ = - - ¢, 4 . 270

However, integrating over the volume of theNM,we can see that the homogeneous boundary condition (25)

can no longer be used. Instead, setting
 =
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d

d 1
, i.e. an inhomogeneousNeumann boundary condition,

onefinds thatC=− 1, and theGF function of the problem is then given by [27, 41] (up to a constant)
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When one of the arguments is on the surface, i.e. x¢ = ¢n (x¢ = 1), (28) simplifies into
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Note that, in general, because of the inhomogeneous boundary condition (29), theGF ( )( ) x x¢,0 looses its

symmetry of interchange ⟷x x¢. However, by imposing the condition ∮ ( )( ) x ¢ ¢ =
¶

d nn, 0
V

0 2 , this symmetry

is restored. TheGF ( )( ) x x¢,0 in (30) yields ∮( ) ( )( ) xp ¢ ¢ = -
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0 2 , and hence bymaking the

replacement ( )( ) ( )  - -2 ln 20 0 , which does notmodify the boundary condition (29), we restore the
symmetry ⟷x x¢.

For ξ= 1 (or r= R), we obtain the fourth-order expansion
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In this section (Kc= 0), the spin deviationψβ is then given by [40]

∮( ) ( ) ( ) ( )( ) ( )x xy
p

= ¢ S ¢ ¢b b
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d n m n n
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4
, , . 32

V

0 2
0
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Note that hadwe kept the constant -2 ln 2 in ( )( ) x n,0 , wewould have obtained the same result since the
contribution of this constant term vanishes under the surface integral whenwe substituteΣβ from
equations (21) 18). For the same reason, odd-order terms in the expansion (31) do not contribute to (32).

Therefore, using (18) and the expansion (31) up to 4nd order in ξ, we obtain the following explicit
expressions (ξ= r/R) for the components of the spin deviation vector ( )y 0 :
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where l º k15 32s s . These expressions have been obtained using the following integrals
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We see in equation (33) that the spin deviation ( )y 0 , caused by surface anisotropy, is linear in the
corresponding constant ks (throughλs) and depends on the equilibriummagneticmomentm0. It is also clear
that this deviation depends on the positionwithin theNMand on the direction alongwhich ξ is varied from the
center out to the boundary of theNM.These results corroborate the discussion of the spin configuration shown
infigure 1.

When r is on the surface, i.e. ξ= n, we obtain the largest deviationwith respect to the homogeneous statem0

(using the ξ2 expansion):
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Aswewill see below and in the next section, it is handier in practice to use the expansions in equation (33)
than the exact integral (32). For this purpose, we compare the two infigure 2.
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The plots infigure 2 show that the 4th− order expansion of theGreen function (30) renders a fairly good
approximation to the components ofψ for all ξ between 0 and 1, i.e. from the center of the nanomagnet up to its
border.

We have also compared these results, rendered by theGreenʼs function technique, to the solution of the
same boundary problemusing the technique of spherical harmonics (SH), presented in [16, 17]. The outcome of
this comparison is shown infigure 3 for two values of ks. Note that herewe have averaged the netmagnetic
moment over the direction solid angle [see discussion below].We see that the 4th− order approximation given
in equation (31) and adopted here for theGreenʼs function ( )( ) x¢n,0 , agrees verywell with the expansion in
terms of spherical harmonics up to the same order, to the 6th and even to the 10th order (not shown).

Next, using (14), we can nowwrite explicit expressions for the components of theNMmagneticmoment,
mα,α= x, y, z. In the frame ( )m u u, ,0 1 2 withu1 andu2 given in equation (22), we have

( )y y y= +r u u1 1 2 2

or using =am 1 30, and

· · ·

· · ·

= =
-

=

= = = -

u e u e u e

u e u e u e

1

2
,

1

2
, 0,

1

6
,

1

6
,

2

3
,

x y z

x y z

1 1 1

2 2 2

Figure 2.Components ( )y a =a , 1, 20 , of the spin deviation vectorψ as a function of (scaled) distance ξ from the center of the
nanomagnet. The red curve is a plot of the integral (32), numerically computed using the exact Greenʼs function (30). The blue and
green curves (in symbols) are, respectively, obtained from equation (31) using the second and fourth order expansions. For both
components, the direction of ξ is set to θ = π/4,j = π/2. kc = 0, ks = 0.1. [Nomagneticfield].

Figure 3.Component of the netmagneticmoment, averaged over the solid angle, as a function of ξ, for kc = 0, ks = 0.1 (left) and
kc = 0.0, ks = 0.3 (right), as given by theGF approach (4th − order) and SH approach (4th and 6th orders). [Nomagneticfield].
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wewrite ( )y r in the frame ( )e e e, ,x y z as :
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Therefore, to 2nd order in r (or ξ), we obtain the spatial profile of the netmagneticmoment (for kc= 0)
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where ˜ ( )x x x q j q j qº = sin cos , sin sin , cos gives the direction of ξwithin the nanomagnet.
More explicitly, we have
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This analytical result, a quadratic expansion in ξ, may be compared to the numerical solution of the LLE (4).
However, such a comparison is not easy in practice and here is why.

Themagnetization profile similar to equation (36)has been obtained, in the discrete approach, by solving
the (damped) LLE (4) for a spherical NMas defined earlier with theHamiltonian in equation (1).More precisely,
we prepare theNMby cutting a sphere in a simple-cubic 3D lattice of linear sizeN=Nx=Ny=Nz, the outcome
being a sphere-shaped ensemble of  spins. Then, we set the physical parameters J,Kc,Ks, h, etc, and run the
Heun (or 4th-order Runge-Kutta) routine to solve equation (4), until the equilibrium state is reached. The result
is a spin configuration similar to that shown infigure 1. For each such a spin configuration, we collect the spatial
profile of the netmagneticmomentm aswe go from the center to the border of theNM, in a given direction.
Now, because of the discreteness of the underlying lattice (inside a spherical NMcut out of a simple-cubic
lattice), the raw profile, or the components ofm in equation (3) as a function of the lattice site ri, yields rather
jagged plots. In order to smooth out the data, wemay average over the direction ( )q j, of ξ and consider only the
radial profile ofm, i.e. ( )xm . This is given by
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We see that upon averaging over the direction ( )q j, , the linear contribution inψ vanishes. This can also be
checked by performing the same average in equation (32)which, in turn, amounts to checking that the average of
theGF (30) over the direction of ξ vanishes. This result is consistent with and justifies the condition (13).

Then, the integration overΩ yields
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and uponusing ( )= + +m m m1 z x y0,
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This finally leads to the solid-angle average of themagnetization profile

( ) ( )⎜ ⎟
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Note that upon averaging over the direction ( )q j, , the quadratic contribution in equation (36) vanishes and
only the quartic contribution remains in the expansion (14). The experimental techniques at our disposal today
are not precise enough to allow for a probe of themagnetization profile in a given direction ( )q j, within the
nanomagnet. In addition, even if this were possible, the prototypical nanomagnet samples are assemblies with
distributed nanomagnets and, as such only an average over thewhole assembly can be accessed by
measurements. This implies that if wewere able to probe themagnetization profile, we shouldmost likely
observe the quartic behavior given by equation (39).

For later reference, we introduce the coefficient (of ξ4)

( )⎜ ⎟
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 å
l

bº - =b b
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am m x y z
15

1 , , , . 40s
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2

0,
4

In order to further smooth out the lattice-induced jaggedness of the numerical data, wemay also average
over themagnitude of ξ takenwithin slices (or ring bands) perpendicular to the radial direction. For this, we
adopt an onion structure for theNMand plot the netmagneticmoment á ñWm as a function of the points ξn,
i= 1KM, each of which being the center of a ring band.Doing so, leads to the discrete expression

( ) ⎜ ⎟
⎛
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⎠
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l
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aW mm m m
15

1n
n

s
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0,
4 4

or component-wise

( ) ( ) x xá ñ -b b bWm m . 41n
n n0,

4

In the numerical calculations (numerical solution of the LLE), from each spin configuration obtained for a
set of physical parameters and a given linear sizeN, we infer the average ( )xá ñ =W r Rm n

n n . The latter isfit to
-b ba r4, forβ= x, y, z, to obtain the coefficient b. The results are shown in figure 4 (right). It is clearly seen

that a larger ks corresponds to a larger coefficient and thereby to stronger spinmisalignments or deviations from
m0. In addition, as the radius of theNM increases (we only showpart of the data that have been obtained for
N= 25, 26,K,111 orR= 12, 13,K,55), the coefficients for different values of ks tend to zero. Indeed, as the size
increases, the ratio of the number of surface spins to the total number decreases to zero. This translates into
negligible surface effects and thereby to vanishing spin deviations. Indeed, a fit of the curves infigure 4 (right)
yields  ~b

-R 2, leading to ( ) ( )á ñ ~ -b b bWm r a b R rn 2 4, where bβ is a constant. This is illustrated infigure 5
wherewe compare themagnetic profile for different sizes tom0,z, themagneticmoment in the uniform state.
Finally, it is worth noting, by examining the vertical scale, that the deviation of themagneticmoment from the
net directionm0 is rather small but it increases towards theNMboundary.

3.2. In the presence of core anisotropy
Themore realistic situationwith anisotropy in the core of theNM (Kc≠ 0), as well as on the surface (Ks≠ 0), is
more involved. Indeed, there is noGF solving the problem stated in equations (24) 25). However, since the

Figure 4. (Left)Magnetization profilemz against ξ given by equation (41) and (right) coefficient of r
4 as a function of theNMradius

( )= -R N 1 2, withN being the linear size. This is z defined in equation (40) divided byR
4. These results are for a spherical NM

with kc = 0, ks = 0.1, 0.3. [Nomagneticfield].
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coefficients ka
2 in equation (19) are small, owing to the fact that the core anisotropy and the applied field are, in

typical situations, small with respect to the exchange coupling, we can use a perturbative approach. Indeed, we
maywrite [30]

( ) ( ) ( ) ( )( ) ( )x x xy y k y+b b b b . 420 2 1

Then, substituting in equation (17), using ( )( ) xyD =x b 00 [see section 3.1] and dropping the term in kb
4 ,

leads to

( ) ( )( ) ( )x xy yD =x b b .1 0

Next, we have
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y
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y

x
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x
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x

b
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x= = =

d

d

d

d

d

d
.

1

0

1

2
1

1

Now, ( )y 0 is themajor contribution toψ that stems from surface anisotropy and ( )y 1 appears only in the
presence of core anisotropy and/or appliedmagnetic field (κβ≠ 0), which tend to reduce the spin
misalignments.Wemay then consider that ( )y 0 still satisfies the boundary conditions (18), thus leading to

( )y

x
=b

x=

d

d
0.

1

1

Therefore, ( )yb
1 is afield that satisfies Poissonʼs equation subjected to homogeneousNeumann boundary

conditions, namely

( ) ( ) ( )( ) ( )x xy yD =x b b , 431 0

( )
( )y

x
=b

x=

d

d
0. 44

1

1

The solution of this problem can only exist if ( )( )ò x xy =bd 0
V

0 . It can be checked that this is indeed the

case by using expressions (33). This is also compatible with the condition (13) that could be assumed to apply at
all orders of perturbation. In this case, there exists aGF, call it ˜ ( ) x x¢, , satisfying

Figure 5. Spatial profile of the z component of theNMnetmagneticmoment, averaged over the directionΩ, as a function of the radial
distance ( ) x= - ´r N 1 2 , with 0 � ξ � 1, for kc = 0, ks = 0.1. The continuous red line is the netmagneticmoment component

=m 1 3z0, . On the scale used here, theGF function curve given by equation (41) coincides with the asymptotic straight line
=m 1 3z0, . [Nomagnetic field].
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The solution of the problem then reads [40]
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whereDβ is a constant. In fact, we see that ˜ ( ) x x¢, is the solution of the same problem as ( )( ) x x¢,0 and, as such,
wemay simply take ˜ ( ) ( )( ) x x x x¢ = ¢, ,0 . In addition, the constantDβ can be determined by assuming that the
spinmis-alignment vanishes at the center of theNM, i.e. ( )( )y =b 0 01 . This yields, using

equation (28), ( ) ( )( ) ( )ò x x xy= =b p bD d 0, 0
V

1

4
0 0 .

Finally, we obtain the solution

( ) ( ) ( ) ( )( ) ( ) ( )òx x x x xy
p

y= - ¢ ¢ ¢b bd
1

4
, . 46

V

1 0 0

Note that this result can also be obtained by proceeding through an expansion of theGF ( ) x ¢b n, that
appears in equation (24), instead of the expansion in equation (42). This is done in appendix. Equation (46),
which derives from equation (43), suggests that ( )yb

0 acts as a source for thefield ( )yb
1 .

Let us nowdiscuss the explicit calculation of the components ( )( ) xyb
1 of the spin deviation.Note that in

equation (46), we have an integral over the volume and thereby none of the arguments of ( )( ) x x¢,0 is fixed on
the surface. As a consequence, we have to use the exact expression (28), instead of the expansion (31).
Unfortunately, it is then difficult to obtain a closed analytical result for the integral in equation (46). On the other
hand, if we use instead the representation (46) in terms of theGF ( ) 1 in equation (A3), we again encounter an
integral over the volume of the product of two ( ) 0 , one of which has both arguments inside∂V. Consequently,
we can provide analytical (approximate) expressions for ( )( ) xyb

1 only for ξ on the boundary∂V. This should

yield the largest contribution from ( )( ) xyb
1 , as one obtains for ( )yb

0 in equation(35), see below. For arbitrary ξ,
with 0� ξ� 1, wemust resort to numerical integration.

For ξ on the boundary∂V, i.e.ξ= n, we use equations (31) and (35) to derive the following expressions for
the components of ( )y 1 on the sphere:
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The components of the largest spin deviation represented by the (total) vectorψ, within a spherical NMwith
equilibriummagneticmomentm0, are obtained by substituting (35) and (47) into equation (42). This yields
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Note that because of the factor k- a1 142 , these expressions are valid for ka 14 3.74. However,
since they have been derived using an expansion inκα, these expressions are actually valid for amuch smallerκα
and the previous condition adds no new constraint.

We can also numerically compute the integral in (46) and then average over the solid angle. However,
although this procedure is quite affordable to todayʼs computers using optimized algorithms, it still remains
rather costly with regard to theCPU resources, especially when several curves are needed for comparison.Here,
we resort to the numerical solution of the LLE system, as done in the case of kc= 0, which allows for the full
procedure in an easiermanner. Accordingly, in figure 6we plot the deviation of the z component of the net
magneticmoment, ( ) ( )d º -m m r m 0z z z , averaged over the directionΩ, as a function of the radial distance

( ) x= - ´r N 1 2 , for ks= 0.3 and kc= 0.01 (full lines) and kc= 0 (dashed lines).We recall that the uniaxial
anisotropy here is taken along the z axis. If it is taken along the cube diagonal, the deviations will bemuch
smaller. Indeed, we note that in the presence of anisotropy in the corewith an easy axis in the z direction, the
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statem0 is no longer along the cube diagonal; it is tilted towards the z axis by an angle that depends on the relative
strength of the core anisotropy (kc). This results in a competition between the core and surface anisotropies.

The results in figure 6 show that, bothwith andwithout core anisotropy, the overall spin deviations are
reducedwhen theNMsize increases. In addition, herewe see that for a given sizeN of theNM, the curves with
andwithout core anisotropy (same color) intersect at a given distance rc from the center of theNM.As discussed
earlier, the spinmisalignments induced by the surface anisotropy tend to propagate from the boundary to the
center of theNM,while the effect of the core (uniaxial) anisotropy is to align the spins parallel to each other and
thus to push the spinmisalignments out to the border. The competition between these two effects results in a
critical radius rc, or core correlation length (indicated by the dashed vertical lines), over which the core
anisotropy dominates, thereby rendering aweaker spin deviation. This is illustrated by the fact that, for r� rc,
the continuous curves (kc≠ 0) are below the dashed ones (kc= 0). Furthermore, in the plot on the right, we see
that the distance rc increases with the radius ( )= -R N 1 2 of theNM ; it behaves as a− b/R2 with b> 0 (see
thefitting curve in red). So, asR increases the surface relative contribution decreases and the core anisotropy
then dominates and pushes the spin noncollinearities farther out towards theNMborder. As a consequence, the
surface contribution to the overall anisotropy of theNMscales with the surface (∼R2), as was discussed in [27].

4. Summary, Conclusions, andOutlook

Wehave built a formalism for solving theHelmholtz equation, with inhomogeneousNeumann boundary
conditions, satisfied by the spin deviation vector induced by surface anisotropy in a nanomagnet, using the
technique ofGreenʼs functions in the continuum limit. The nanomagnet has beenmodeled as a spherical
crystallite of  atomicmagneticmoments andwhose energy comprises the exchange interaction, the Zeeman
contribution and the anisotropy energy that discriminates between spins in the core, attributed a uniaxial
anisotropy, and spins at the surface whose anisotropy is given byNéelʼsmodel.We have also provided the
numerical solution of a systemof coupled Landau–Lifshitz equationswritten for the atomicmagneticmoments
and compared the results to those of the analytical approach.We have computed the solid-angle averaged
components of the nanomagnetʼs netmoment as a function of the distance to theNMcenter in the radial
direction, both in the absence and presence of anisotropy in the core. In the former case, we have provided good
approximate analytical expressions for the spin deviation at an arbitrary positionwithin the nanomagnet. In the
latter case, however, the solution is only given numerically, either through a volume integral within theGreenʼs
function approach, or numerically by solving the Landau–Lifshitz equations. Nonetheless, an analytical solution
for this case has been given on the boundary of theNM,which represents the largest spin deviation. Both the
numerical and (semi-)analytical results show that the spin deviations induced by surface anisotropy are stronger
with larger surface anisotropy constant and/or smaller sizes.

As discussed in the introduction, the small-angle neutron scattering technique should provide uswith a
relatively precise probe of a signature of spin deviations in nanomagnets. However, with real samples, we are
facedwith various distributions (size, shape and anisotropy) and collective effects due to inter-particle
interactionswhichmay lead to a smearing out of the surface effects and the entailed sought-for spin
misalignments. As afirst step, wemay consider doingmeasurements on an array of well separated platelets (or
thin cylinders), thus avoiding strong inter-particle interactions while ensuring enhanced surface contributions

Figure 6. (Left)Deviation of the netmagneticmoment ( ) ( )d º -m m r m 0z z z , averaged over the directionΩ, as a function of the
radial distance ( ) x= - ´r N 1 2 , for ks = 0.3 and kc = 0.01 (full lines) and kc = 0 (dashed lines). Note that, for the reasons
explained in the text, themaximumvalue of ξ is 0.95 and this is why the curves do not reach the last points at r = 30, 35, 40. (Right)
The core correlation length over which the core anisotropy dominates (see text). [Nomagneticfield].
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to the overall anisotropy. In parallel to these investigations, further theoretical endeavor is required in order to
take account of the inter-particle interactions together with other forms of anisotropy thatmight stem from
different shapes and internal structures of the nanomagnets (e.g. platelets). In this context, the present Greenʼs
functionmethodologymay form the basis for computing themagnetic small angle neutron scattering cross-
section of nanomagnets according to theirmagneticmaterials parameters.
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Appendix. Expansion of theGreenʼs function in the presence of core anisotropy

Similarly to the expansion ofψ in equation (42), wemaywrite theGF b that appears in equation (24) as follows
[30]

( ) ( ) ( ) ( ) ( )( ) ( )  x x x x x xk¢ = ¢ + ¢ + ¼a am m h, , , , , . A10
0 2

0
1

It is then easy to see, upon using equation (27), that the correction term ( )( ) x x¢,1 satisfies the following
equation (upon dropping terms in ka

4 )

( ) ( ) ( )( ) ( ) x x x xD ¢ ¢, , A21 0

and that its solution can bewritten as a convolution

( ) ( ) ( ) ( )( ) ( ) ( )  òx x x x x x
p

x¢ = - ¢ ¢ ¢ ¢¢ ¢ ¢d,
1

4
, , A3

V

1 0 0 3

with the boundary condition [using equation (29)]

( ) ( )
( )

( )
ò x x

x p
x=  ¢ 

x=

d

d

1

4
, d . A4

V

1

1

0 3

Then, in equation (26), we substitute the expansions for ( )xyb and ( ) x ¢b n, , from equations (42) and (A1),
respectively, and identifying the terms of the same order inκβ, we obtain the following two equations

∮

∮

( ) ( )

( ) ( )

( ) ( )

( ) ( )





x x

x x

y
p

y
x

y
p

y
x

= ¢ ¢

= ¢ ¢

x

x

b
b

b
b

¶
= ¢

¶
= ¢

d n

d n

n

n

1

4

d

d
,

1

4

d

d
, .

V

V

n

n

0 2 0

1 2 1

Next, using (44)we recover equation (32) for the component ( )yb
0 together with the following equation for

( )yb
1 :
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∮( ) ( ) ( ) ( )( ) ( )x xy
p

= ¢S ¢ ¢b b
¶

d n m n n
1

4
, , . A5

V

1 2
0

1

Then, replacing ( )( ) x ¢n,1 by its expression in equation (A3) leads to

∮( ) ( ) ( ) ( )( ) ( ) ( )⎡
⎣

⎤
⎦

 òx x x xy
p

x
p

= - ¢ ¢ ¢ S ¢ ¢ ¢b b
¢ ¢

¶

¢d d n m n n
1

4
,

1

4
, , .

V V

1 3 0 2
0

0

Here, we recognize the termbetween brackets as ( )yb
0 , according to equation (32), thus recovering (up to a

constant) the result obtained in equation (46). Note that themain difference between the two representations, is
that (46) is an integral over the volume of theNMwhereas (A5) is an integral over its surface.
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