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Abstract

We consider a single spherical nanomagnet and investigate the spatial magnetization profile m(r) in
the continuum approach, using the Green’s function formalism. The energy of the (many-spin)
nanomagnet comprises an isotropic exchange interaction, a uniaxial anisotropy in the core and Néel’s
surface anisotropy, and an external magnetic field. We derive a semi-analytical expression for the
magnetization vector field m(r) for an arbitrary position r within and on the boundary of the
nanomagnet, as a solution of a homogeneous Helmholtz equation with inhomogeneous Neumann
boundary conditions. In the absence of core anisotropy, we use the solution of this boundary problem
and infer approximate analytical expressions for the components m,,, @ = x, y, z, as a function of the
radial distance r and the direction solid angle. Then, we study the effects of the nanomagnet’s size and
surface anisotropy on the spatial behavior of the net magnetic moment. In the presence of a core
anisotropy, an approximate analytical solution is only available for a position r located on the surface,
i.e.r = Rn, where R is the radius of the nanomagnet and n the verse of the normal to the surface. This
solution yields the maximum spin deviation as a result of the competition between the uniaxial core
anisotropy and Néel’s surface anisotropy. Along with these (semi-)analytical calculations, we have
solved a system of coupled Landau-Lifshitz equations written for the atomic spins, and compared the
results with the Green’s function approach. For a plausible comparison with experiments, e.g. using
the technique of small-angle magnetic neutron scattering, we have averaged over the direction solid
angle and derived the spatial profile in terms of the distance . We believe that the predictions of the
present study could help to characterize and understand the effects of size and surface anisotropy on
the magnetization configurations in nanomagnet assemblies such as arrays of well-spaced platelets.

1. Introduction

Why has studying nanoscaled systems suddenly become so important? How can a material that is so small be so
influential as to trigger a tremendous research activity worldwide? To understand the power of nanomaterials,
we need to understand how materials work at the very small scale. When the dimensions of the system are
reduced down to the nanoscale, the first big change is the larger proportion of atoms at its surface, and this leads
to a dramatic change in the chemical and physical properties. For example, bulk gold is an inert metal that does
not react much and thus does not rust, whereas at the nanoscale, it works as a catalyst. A nanoparticle of gold
about 90 nm in size absorbs red and yellow light from the color spectrum, making the nanoparticle appear blue
or green [1]. However, the same nanoparticle that is only 30 nm in size, absorbs blue and green light, and so
appears red. Today, we know that this is so because the optical properties of metal nanoparticles are dominated
by the surface plasmon resonances for both absorption and scattering of light [2]. At the bottom end of the
nanoscale, quantum phenomena start to emerge through a transition from the electronic-band structure to
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discrete energy levels [3]. This fundamentally alters the material properties and leads to many new phenomena
[4], such as the energy gap and excitonic absorption of light, unique catalytic activity, and single-electron
magnetism. In addition to the electronic structure alteration, the crystal structure also starts to exhibit significant
changes with respect to the bulk material.

The reduction of the size and the entailed changes in the electronic and crystal structure fundamentally alter
the magnetic properties as well. As the size reduces to the nanometer, the magnetic system, nowadays called a
nanomagnet, exhibits a new phenomenon known as superparamagnetism [5, 6] with a change in the relevant
temperature by an order of magnitude and in the relaxation time by several orders of magnitude. Furthermore,
the large surface contribution in nanoscaled magnetic systems leads to inhomogeneous atomic-spin
configurations [see [7—11] and references therein] and thereby to a drastically different behavior in response to
external stimuli. For example, new modes of magnetization switching play a crucial role in many new spintronic
applications [12]. Likewise, these surface-induced effects strongly affect the relaxation processes owing to a more
complex potential energy and new excitation modes [13, 14].

Therefore, in order to understand and master the new magnetic properties of nano-elements, in view of
efficient practical applications, it is essential to probe the novel features induced by their surfaces and interfaces.
In particular, it is crucial to investigate the atomic-spin configurations within the nanomagnets and characterize
the spatial profile of their magnetization. In this work, we present a study of the latter within spherical
nanomagnets using the technique of Green’s functions (GF). This is part of a broader work that makes use of
complementary techniques with the aim to better characterize surface-induced spin noncollineartities and their
effects on the equilibrium and dynamic behaviors of assemblies of nanomagnets. In this context, the present
work provides a general formalism that renders fairly precise and useful analytical expressions of the spatial
magnetization profile, clearly presenting all the involved mathematical steps and approximations. As a
byproduct, it confirms and elaborates on the conclusions reached by previous works regarding the effects of
surface anisotropy in nanomagnets.

When averaged over the solid angle, the spatial magnetization profile may be compared with experiments,
such as magnetic small-angle neutron scattering (SANS)[15] in assemblies of nanomagnets. Indeed, the present
formalism constitutes a basis for computing the magnetic SANS cross-section of nanomagnets as a function of
their various physical parameters. Accordingly, in a recent study [16, 17], we investigated the signature of
surface-induced spin misalignments in the SANS cross section upon varying the applied magnetic field and the
nanomagnet energy parameters.

Plan of the article: After an introduction, in section 2, we present our model for a nanomagnet, viewed as a
crystallite of A/ atomic magnetic moments and then describe the continuum approach for studying the spatial
profile of its magnetization. In section 3, we use the Green’s function technique to obtain the spin deviation
vector in terms of surface anisotropy, in addition to other parameters, both with and without the anisotropy in
the core. We plot the magnetization profile in the radial direction and study its behavior as we vary the size of the
nanomagnet and the anisotropy constants. The results from the Green’s function formalism are also compared
to the numerical calculations based on the solution of the system of coupled Landau-Lifshitz equations. Finally,
in section 4, we summarize the main results of this work and discuss the possibility of experimentally
investigating the surface-induced spin-misalignments, e.g. by SANS technique. The paper ends with an
Appendix.

2. Many-spin nanomagnet

2.1. Discrete lattice

A many-spin nanomagnet (NM) is viewed as a crystallite of N atomic magnetic moments p; = p,m;

(|m;|| = 1) with p, = Mo, where M; is the saturation magnetization and v, is the volume of the unit cell of the
underlying lattice. The magnetic state of the NM may be investigated with the help of the atomistic approach
based on the anisotropic (classical) Dirac-Heisenberg Hamiltonian [7, 18-25]

N N
1
H= _EZL‘j m; - mj — pHext - ) my + Y Han,i
(i) i=1 i=1

= Hexe + Hz + Hans M

where Hx. is the (nearest-neighbor) exchange energy, Hy the Zeeman contribution and H,, = Z{\:/ 1 Han,i the
anisotropy energy with H,, ; = —K; .A(m,), being the anisotropy contribution of each spin on site #; A(m;) is
the anisotropy function that depends on the locus of the atomic spin s;. So, for core spins, the anisotropy may be
uniaxial and/or cubic, while for surface spins there are a few models for on-site anisotropy that is very often
taken as uniaxial with either a transverse or parallel easy axis. There is also the more plausible model proposed by
Néel [26] for which A(m;) = %Zjﬁ _ ,(m; - u;)?, where z;is the coordination number at site 7 and u;;a unit

2
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Figure 1. Magnetic structure of a spherical nanoparticle of linear size N = 20, showing atoms in the plane z = 0.

vector connecting the nearest neighbors 7, j. The constant K; > 0 is usually denoted by K_ if the site i is in the core
and by K;if it is on the boundary.

Therefore, in the sequel we will refer to the Néel Surface Anisotropy (NSA) model and this means that we
consider a uniaxial anisotropy in the core with easy axis (whose verse is the unit vector e, ) and Néel’s on-site
anisotropy for spins on the surface. More precisely, in the NSA model we adopt the following anisotropy energy

—K.(m; - &), i € core
R 1 .
Han,l +=K, Z (m; - uij)z’ i € surface. @
jENn.N.

The macroscopic state of the NM may be described using what is often called the superspin ormacrospin, that
is the net magnetic moment

1 N
m = ﬁ; m;. (3

The dynamics of the magnetic moments m, is governed by the (damped) Landau-Lifshitz equation (LLE) or,
more precisely, the system of coupled Landau-Lifshitz equations written for the atomic magnetic moments m;
(i=1,2,...,N),

dm;
dr

with the (normalized) local effective field h.g ;, acting on s;, being defined by h.; = —6H /6s;. Tis the reduced
time given by 7 = t/7,, where 7, = 11, /(7]) is a characteristic time of the system’s dynamics; y > 1.76 x 10"
(Ts) ' is the gyromagnetic ratio and « the damping parameter (~0.01 — 0.1). For example, for cobalt ] = 8 meV
and 7, = 70 fs. In these units, heg; = 11,Heg /], where Hfff = —(1/p,) (6'H/ém;) is the deterministic field that
comprises the exchange field, the magnetic field H,,, and the anisotropy field Hy.

The spin configuration shown in figure 1, with the net magnetic moment along the diagonal, is obtained by
(numerically) minimizing the energy (1) by solving the system of coupled Landau-Lifshitz equations (4) [7, 23,
27-30]. This is a typical spin structure that is induced by the NSA in a spherical NM. Note that the atomic
magnetic moments m; progressively deviate from the global orientation (here the diagonal) as the site i is located
closer to the NM border and away from the diagonal.

Orders of magnitude of materials parameters: Let us now give a few orders of magnitude of the physical
parameters that appear in the Hamiltonian (1). First of all, we note that equation (1) is the energy per atom,
obtained by dividing the total energy of the system by A/, the number of atoms in the NM. Hence, the physical
parameters involved, namely J, Kand 1, (i1, H), are measured in Joule per atom. For instance, the anisotropy
energy, which is often written as KV where Vis the volume of the NM and K the density of anisotropy energy
(inJ/m?), becomes KV = Ny K = NK. Similarly, the Zeeman contribution which usually reads 11(HM is now

=m; X heg; — am; X (m; X hegy), 4)
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rewritten as jiy HM = Ny, (uoH ).” In the NSA model, we distinguish between the core (full coordination) and
surface atoms (with smaller coordination). As such, the anisotropy constant K, applies only to atoms in the core
of the NM and K; only to those on its surface. For instance, for cobalt, the magnetic moment per atom

[ta = Mofip, With 11 being the number of Bohr magnetons per atom (11, ~ 1.7) and 15 = 9.274 x 10~ >*]/Tis the
Bohr magneton. Hence, 1, ~ 1.58 x 10 ** J/T. Next, the magneto-crystalline anisotropy constant is roughly
K.~ 3 x 10 **]/atom, the surface anisotropy constant is around K, ~ 5.22 x 10~ > Joule/atom and the (bulk)
exchange couplingis J ~ 8 mevor 1.2834 x 10! J/atom. The lattice parameter is a=0.3554nm. As such,

k.= K./J~0.00234 while k, = K,/] ~ 0.04. The latter value is within the range of values estimated by several
experimental studies. Indeed, one may find K,/J ~ 0.1 for cobalt [31], K;/J ~ 0.06 for iron [32], and K,/] ~ 0.04
for maghemite particles [33].

2.2. Continuum approach

In the continuum approach, the magnetic configuration of a system is described by the continuous
magnetization vector field M(r) constrained to a constant norm M;. The relation between the discrete and
continuous descriptions is [34]

M(r) = z Hi/Vo )

where pu;is the discrete magnetic moment of the i ion belonging to a given sub-lattice. The summation is
carried over all sites in a physically small volume v, around a point whose position is r = (x, y, z), and within
which the moments p; are assumed to be uniform. The normalized magnetization density vector field is then
defined by

m(r) = M(r)/M,. (6)

In the continuum limit, the exchange interaction is written in terms of the exchange stiffness A (e.g. about
3.6 pJ/m for cobalt) as an integral over the volume V of the NM

Hee = A fv dr S (Vm, - Vim,). @)

a=x,9,2

For a simple cubic lattice, we have the relation between Jand A: A = J/2a, with a being the lattice constant.
This is the classical analog of the relation that applies to a simple cubic lattice of quantum spins, A = J (§%)/2a.
Using theidentity V - (m,, - Vm,) = m,Am, + (Vm,)?and the divergence theorem, the exchange

energy can split into a core and a surface contribution, namely

_ _ 3 2
Hee = —A Y j;maAmadr—i—A > ‘év Mo Vimg n dr. (8)

a=x,y,z a=x,y,z
Next, the Zeeman term reads,
My = ~MHe - [ &r m@) ©)
and the anisotropy energy for core spins becomes
K
Heore = —= f d3r(m ) ez)z-
VO Vin

Note that Vi, /vo, with vy = @, is equal to the number of core atoms that we denote by N, so that
ViuK./vo = N.K.. Regarding surface anisotropy, it was shown in [27] that the corresponding energy in the NSA
model can be replaced by the approximate expression for a sphere [see [35] for a cube]

K,
Hsurface = _?$Z|na| ﬂ’l(%, (10)
@

where n is the unit vector of the normal to the surface (the boundary 0V of the NM). Then, in the continuum
limit, Hyrface Pecomes

K,
2a?

Hsurface = -

> 55 d*|ng| m?.
ov

A=X,),2

Therefore, collecting all contributions, the nanomagnet’s Hamiltonian in equation (1) becomes in the
continuum approach

3 The magnetic field H in (1), and all subsequent equations, should be understood as 11oH which is measured in Tesla, so that the Zeeman
term /1, (1o H) is measured in J /atom.
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H=A ), [%Vmana~nd2r—f maAmad3r]
v

ae{x,y,z}
— M.H.y - f d*r m(r)
v
K, K.
fa—;j;(m-eA)zd%fz—asz > §Z€9V|”a| m?2 dr. (11)

a€c{x,y,z}

In the case of small spin-misalignment, where the magnetization density m(r) slightly deviates from the
homogeneous magnetization state m, [see figure 1], a perturbation approach is applicable. Accordingly, m, is
considered as the principal unit vector” associated with m(r) while the spin-misalignment is encoded in the
vector field 1 (r) with ¥ (r) L my. Therefore, we write [36, 37]

m(r) = moy/1 — [P @) + P(), (12)

withmy - 9 = 0 and thereby |m(r)| = 1, together with the condition (discussed later in the text)
f & () = 0. (13)
v

Assuming that 1), < 1, a = x, y, z, an approximate closed-form solution for the normalized magnetization
density can be obtained by performing the second-order expansion of equation equation (12) with respect to 1 :

m(® = mo + () — %HTP(I‘)HZmo- (14)

Next, one can rewrite the Hamiltonian (11) using a perturbation approach and minimizing with respect to
the Cartesian components v, 1, ¢,, leading to a homogeneous (vector) Helmholtz equation for these
components, together with inhomogeneous Neumann boundary conditions. However, owing to the transverse
character of ) (my, - 1 = 0), it is more convenient to work in the local frame attached to my, i.e. (my, u;, wy),
where u; and u, are the following two unit vectors [37]

_ mg X e _ mp(mg - e4) — ey
| = —, = . (15)
|lmg X el [mo(my - ex) — eql|
In the new frame, we have
P =Py + Pruy (16)

and||¥ (r)|> = f + v3. Consequently, with the help of a linear transformation, the problem is readily reduced
to the following system of decoupled homogeneous scalar (dimensionless) Helmholtz equations

[Ac — k3108 =0, B=1,2 a7
along with the inhomogeneous Neumann boundary conditions
du -
ﬂ = ks Z |na|(m0 : ea)(uﬂ : ea)’ ﬁ =1, 2 (18)
d§ c=1 a=x,5,z

Here we have introduced the dimensionless coordinates £ = r/R, where R is the NM radius, together with the
following Helmholtz coefficients x5, 3 = 1, 2, given by

’ﬁz = (Hext - mg) + 27;5 - (mg - ey)?, (19)
K3 = (Bex - mo) + 2k - [2(m, - e4)? — 1.
where
2 2
lzc = l(2) kc’ Es = (B)ks) Eext = l(2) hext> (20)
2\a a 2\a

with D = 2R being the diameter of the NM, k. = K,/J and k, = K,/] the (dimensionless) reduced anisotropy
constants introduced earlier, and hey = p,H,./J the reduced magnetic field.
For later use and simplicity of notation, we introduce the surface anisotropy field

dv),
Yg(mg, n) = ﬁ

i 21

=1

4 . . .
In all subsequent formulae, my is considered as a known uniform vector field.

5
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In the case of a core anisotropy easy axis in the zdirection, e, = e,,

u = my X €, W = mO(mO : ez) — €z (22)
1 — m(iz N m&z
and
~ MMy,
B = k===l — Iy,
A1 — my.,
~ my
¥, = ks—mnxl In.ymg . + (Inyl — n]ymg 1. (23)
1 — mo,z

3. Magnetization profile: Green’s function approach

To solve the homogeneous Helmholtz equation (17) for 15, with the inhomogeneous Neumann boundary
conditions (18), a specified gradient on the surface, we use the Green’s function (GF) approach [38—40]. The GF
Gs(&, &) for this problem satisfies the equation

[Ae — k31G3(&, &) = —4ms(& — &), (24)

and may be chosen to satisfy the homogeneous boundary condition of the same type as 13, i.e. Neumann
boundary conditions,

d
di; —0. (25)
In this case, we have the solution [27, 38—40]
1
Ui§) = — ¢ dn’ Xy, w) (6, ) (26)
duj

for £ inside and on its boundary OV, where ¥3(mg, n) =

3 = (Ve1)g) - nisthe outward normal gradient
=n

of ¢z at the surface of the NM, with n = (sin @ cos ¢, sin 6 sin ¢, cos#) and d’n = dQ = sin6 dfdep.

The result in equation (26) simply reflects the fact that the source of spin mis-alignment s within the NM
spin configuration is induced by surface anisotropy via the field 33 = di; given in equation (18). As
discussed in [27], the spin mis-alignment (or disorder) initiated at the surface of the NM propagates into the
body of the latter down to its center. In this case, the contribution of surface anisotropy to the overall anisotropy
of the NM scales with its volume (N°). In the presence of uniaxial anisotropy in the core, the surface spin
disorder is screened out at a certain distance from the center and the contribution of the surface to the overall

anisotropy then scales as the surface (N*) [see section 3.2 for further discussion].

3.1. No core anisotropy

In the absence of core anisotropy (K. = 0) and magnetic field, k7 = 3 = 0 (see equation (19)), the vector my is
along the cube diagonal, i.e. 119, = 1/~/3. Then, equation (17) reduces to the Laplace equation Az =0,
subjected again to the inhomogeneous Neumann boundary conditions (18). The corresponding GF G (&, ¢)
satisfies the Poisson equation

AGOE, &) = —4mo(€ — €. (27)

However, integrating over the volume of the NM, we can see that the homogeneous boundary condition (25)

. dg . . "
can no longer be used. Instead, setting d—d = C,i.e.aninhomogeneous Neumann boundary condition,

=1
one finds that C = — 1, and the GF function of the problem is then given by [27, 41] (up to a constant)
1 1
GO, &)= +
1€ =& 1+ &2 —2¢-¢)
—In|l — (& &) + 1+ &% —2(¢- &) (28)
0)
dg =1 (29)
d¢ 1
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When one of the arguments is on the surface, i.e. £ = n’ ({’ = 1), (28) simplifies into

2
GO n) =
V1+ € -2 n)

—In|l — (£-n) + 1 + & — 2 - 0)|. (30)

Note that, in general, because of the inhomogeneous boundary condition (29), the GF G© (¢, £') looses its
symmetry of interchange £ «—¢’. However, by imposing the condition 555 v GO, n')d*n’ = 0, this symmetry
isrestored. The GF GO (¢, ¢")in (30) yields (1/4m) yg)v GO, n')d*n’ = 2 — In2, and hence by making the
replacement G© — G© — (2 — In2), which does not modify the boundary condition (29), we restore the

symmetry £«—£’.
For £ < 1 (or r < R), we obtain the fourth-order expansion

5
GO¢ n~2—In2+3m- &+ P
7
+ g(n -§)[5(n - §)* — 387
9
+ E[35(n SO —30(n - €)% + 34 + ... (31)
In this section (K. = 0), the spin deviation vzis then given by [40]
PO = = @ dn Symo, w)GOE W) (32)
4 Jov
Note that had we kept the constant 2 — In2in G (&, n), we would have obtained the same result since the
contribution of this constant term vanishes under the surface integral when we substitute ¥ 3 from
equations (21) 18). For the same reason, odd-order terms in the expansion (31) do not contribute to (32).

Therefore, using (18) and the expansion (31) up to 4" order in & we obtain the following explicit
expressions (¢ = r/R) for the components of the spin deviation vector 1)

WA @ @iy Lag - o)
J1—mg, 16
" mi (& — &) + md (& — )+

7/)(20) ~ )\ 0,z 1 2 ) ) X s ) , - (33)

1 — mg, E[mo,x(fx — TE, = &) + mg, (& — (T, — €]

where \; = 15k,/32. These expressions have been obtained using the following integrals

3 , B
Ey%v(n'gﬂndd”—(), a=xy,z
1 L2 2 PR (OO S
E%V[S(n 3] f]|ﬂa|dn—§(3§a €2,
1 . 4 _ . 2¢2 4 2, 1 4 2¢2 4
Eyi,v [35(n - §)* — 30(n - £)°&* + 3¢ |n,| d*n = 5(3550 30826 + 3¢%), (34)

We see in equation (33) that the spin deviation 1)(*), caused by surface anisotropy, is linear in the
corresponding constant k, (through ;) and depends on the equilibrium magnetic moment my. It is also clear
that this deviation depends on the position within the NM and on the direction along which £ is varied from the
center out to the boundary of the NM. These results corroborate the discussion of the spin configuration shown
in figure 1.

When r is on the surface, i.e. £ = n, we obtain the largest deviation with respect to the homogeneous state m,
(using the & expansion):

Mo, x1M,
U (m, mo) = A(nf — n) ———==,
1— mg.,
mo,
¥ (n, mg) ~ A = [(n} — nymg, + (n) — n2ymg, . (35)

\ll - m(iz

As we will see below and in the next section, it is handier in practice to use the expansions in equation (33)
than the exact integral (32). For this purpose, we compare the two in figure 2.

7
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¢i® for (6, ¢) = (m/4, nf2) ¢ for (8, ¢) = (m/4, n/2)

T T T T T T
0T ] Seer —— Numerical
-0.021 ] -0.01f A Analytical: £2 |
v Analytical: £4
_0.04 -0.02f 3
=0.03f 3
—0.06 ]
—-0.04F h
—0.08+ —— Numerical (exact) L Al
i —-0.05} 3
A Analytical: £2
—0.10F v Analytical: £ 1 _0.086F ]
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
§ £

Figure 2. Components ¢, a = 1, 2, of the spin deviation vector 1 as a function of (scaled) distance & from the center of the
nanomagnet. The red curve is a plot of the integral (32), numerically computed using the exact Green’s function (30). The blue and
green curves (in symbols) are, respectively, obtained from equation (31) using the second and fourth order expansions. For both
components, the direction of is setto § = 7/4, ¢ = m/2. k. = 0, k; = 0.1. [No magnetic field].

Magnetic moment (m,) averaged over direction Magnetic moment (m,) averaged over direction
0.57735 ‘ H ! ' ! ! i ]
0.5773+ 1
0.57734 ]
0.5772F b
0.57733[ 1
0.5771F 5
0.57732} 1
0.5770 ]
0.57731F 4 — 0, k.=0.1 1 ke=0,ks=0.3
A SH:4™-order A SH:4™—order
0.57730F v 5H:6™—order ; 0.5769} vy sH:6t —order
= GF:4'" - order i wm— GF: 4" — order
02 03 04 05 0.6 0.7 0.8 0.9 1.0 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0
3 3
Figure 3. Component of the net magnetic moment, averaged over the solid angle, as a function of €, for k. = 0, k; = 0.1 (left) and
k. = 0.0, k; = 0.3 (right), as given by the GF approach (4™ — order) and SH approach (4™ and 6™ orders). [No magnetic field].

The plots in figure 2 show that the 4™ — order expansion of the Green function (30) renders a fairly good
approximation to the components of 1 for all ¢ between 0 and 1, i.e. from the center of the nanomagnet up to its
border.

We have also compared these results, rendered by the Green’s function technique, to the solution of the
same boundary problem using the technique of spherical harmonics (SH), presented in [ 16, 17]. The outcome of
this comparison is shown in figure 3 for two values of k,. Note that here we have averaged the net magnetic
moment over the direction solid angle [see discussion below]. We see that the 4™ — order approximation given
in equation (31) and adopted here for the Green’s function G (n, &), agrees very well with the expansion in
terms of spherical harmonics up to the same order, to the 6™ and even to the 10" order (not shown).

Next, using (14), we can now write explicit expressions for the components of the NM magnetic moment,
Ma, O = X, §, z. In the frame (my, u;, u,) with u; and u, given in equation (22), we have

P(r) = Yiw + Yrwy
or using mg,, = 1/+/3 and

1 —1
w ex:faul ey:ﬁ:ul'ez:():

1 1 2
uz‘ex:—6,u2 ey:T;uz €, = - gy
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we write % (r) in the frame (e, e,, e;)as:

i+ %7/)2
1 1
P(r) = Yrex + 1pyey + e, = ﬁ -+ f¢2 .
2

\/gql)Z

Therefore, to 2" order in r (or £), we obtain the spatial profile of the net magnetic moment (for k. = 0)

B S DOV NI SR (0!
5w 5
A 0. 1 o
+ﬁ( 1*6%)
(1= V25

m(r) = mg + P(r) =

Sl 5~

with

A 1 <2 52
©_ A 1 g2 22y,
1 R2 \/g(gx 5)/)
1
332

where € = £/& = (sin 6 cos o, sin 6 sin ¢, cos #) gives the direction of £ within the nanomagnet.
More explicitly, we have

W= I - B+ - B

sin?@(1 + 3 cos2¢p) — 2cos?H
sin2f(1 — 3 cos2¢) — 2cos?f [&2. (36)
—2(sin? 6 — 2 cos? 0)

, 0, 0) 2 mg + ——=
m(¢ ») = mg 3\/5

This analytical result, a quadratic expansion in &, may be compared to the numerical solution of the LLE (4).
However, such a comparison is not easy in practice and here is why.

The magnetization profile similar to equation (36) has been obtained, in the discrete approach, by solving
the (damped) LLE (4) for a spherical NM as defined earlier with the Hamiltonian in equation (1). More precisely,
we prepare the NM by cutting a sphere in a simple-cubic 3D lattice of linear size N = N, = N, = N_, the outcome
being a sphere-shaped ensemble of A spins. Then, we set the physical parameters J, K., K, h, etc, and run the
Heun (or 4™-order Runge-Kutta) routine to solve equation (4), until the equilibrium state is reached. The result
is a spin configuration similar to that shown in figure 1. For each such a spin configuration, we collect the spatial
profile of the net magnetic moment m as we go from the center to the border of the NM, in a given direction.
Now, because of the discreteness of the underlying lattice (inside a spherical NM cut out of a simple-cubic
lattice), the raw profile, or the components of m in equation (3) as a function of the lattice site r;, yields rather
jagged plots. In order to smooth out the data, we may average over the direction (6, ¢) of £ and consider only the
radial profile of m, i.e. m(§). This is given by

ag 1 7i9)
mio = 6 9% mie) = my [1 14 ;nlpmﬂ. 37)

We see that upon averaging over the direction (6, ), the linear contribution in 1) vanishes. This can also be
checked by performing the same average in equation (32) which, in turn, amounts to checking that the average of
the GF (30) over the direction of & vanishes. This result is consistent with and justifies the condition (13).

Then, the integration over €2 yields

@~2_~22_i @~2_~2 ~2_~2:i
ygv e T ygv ar & TG T =g

anduponusingl = (mg, + mg, + m&y)z,we obtain

dq) 2
fév Ellq/y(r)ll2 = Ekf(l -3 ma‘,a)f“- (38)
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Figure 4. (Left) Magnetization profile m, against ¢ given by equation (41) and (right) coefficient of r* as a function of the NM radius
R = (N — 1)/2, with Nbeing the linear size. This is C, defined in equation (40) divided by R*. These results are for a spherical NM
with k., = 0, k; = 0.1, 0.3. [No magnetic field].

This finally leads to the solid-angle average of the magnetization profile

2
(m)o (&) ~mg| 1 — i—;(l -3 méa)é‘* . (39)

«

Note that upon averaging over the direction (6, ), the quadratic contribution in equation (36) vanishes and
only the quartic contribution remains in the expansion (14). The experimental techniques at our disposal today
are not precise enough to allow for a probe of the magnetization profile in a given direction (6, ) within the
nanomagnet. In addition, even if this were possible, the prototypical nanomagnet samples are assemblies with
distributed nanomagnets and, as such only an average over the whole assembly can be accessed by
measurements. This implies that if we were able to probe the magnetization profile, we should most likely
observe the quartic behavior given by equation (39).

For later reference, we introduce the coefficient (of §4)

2

Cs = mo,gf—;(l -> méa), B=xy,z (40)
«

In order to further smooth out the lattice-induced jaggedness of the numerical data, we may also average
over the magnitude of ¢ taken within slices (or ring bands) perpendicular to the radial direction. For this, we
adopt an onion structure for the NM and plot the net magnetic moment (m)g, as a function of the points &,,,
i=1...M, each of which being the center of a ring band. Doing so, leads to the discrete expression

2
(m)(€,) = mo mof—;(l -z mé,a)éi

or component-wise
(mg)6(€,) ~ mo g — Caél. (41)

In the numerical calculations (numerical solution of the LLE), from each spin configuration obtained for a
set of physical parameters and a given linear size N, we infer the average (m){, (r, = R¢E,). Thelatter is fit to
ag — Car4,for 3= x, y, 2, to obtain the coefficient Cs. The results are shown in figure 4 (right). It is clearly seen
thata larger k, corresponds to a larger coefficient and thereby to stronger spin misalignments or deviations from
my. In addition, as the radius of the NM increases (we only show part of the data that have been obtained for
N=25,26,...,111 or R = 12, 13,...,55), the coefficients for different values of k, tend to zero. Indeed, as the size
increases, the ratio of the number of surface spins to the total number decreases to zero. This translates into
negligible surface effects and thereby to vanishing spin deviations. Indeed, a fit of the curves in figure 4 (right)
yields C3 ~ R™?,1eading to (mg ), (r) ~ az — (bg/R*)r*, where bgis a constant. This is illustrated in figure 5
where we compare the magnetic profile for different sizes to 1, ,, the magnetic moment in the uniform state.
Finally, it is worth noting, by examining the vertical scale, that the deviation of the magnetic moment from the
net direction my is rather small but it increases towards the NM boundary.

3.2.In the presence of core anisotropy
The more realistic situation with anisotropy in the core of the NM (K = 0), as well as on the surface (K = 0), is
more involved. Indeed, there is no GF solving the problem stated in equations (24) 25). However, since the

10
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Magnetic moment (m;) averaged over direction
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Figure 5. Spatial profile of the zcomponent of the NM net magnetic moment, averaged over the direction {2, as a function of the radial
distance r = (N — 1)/2 x &, with0 < € < 1, fork, = 0, k, = 0.1. The continuous red line is the net magnetic moment component
moy, =1/ 3. On the scale used here, the GF function curve given by equation (41) coincides with the asymptotic straight line

o, = 1/+/3.[No magnetic field].

coefficients 2 in equation (19) are small, owing to the fact that the core anisotropy and the applied field are, in
typical situations, small with respect to the exchange coupling, we can use a perturbative approach. Indeed, we
may write [30]

P3(8) = PP ©) + k3 ¥ (©). (42)

Then, substituting in equation (17), using Afwg) (€) = 0[seesection 3.1] and dropping the term in £,
leads to

Ay (©) =P ().
Next, we have

_ P

AT

, 45

s 2 20
dg

d¢

e=1 é=1

Now, ¥ is the major contribution to % that stems from surface anisotropy and /(") appears only in the
presence of core anisotropy and/or applied magnetic field (x4 = 0), which tend to reduce the spin
misalignments. We may then consider that ¥® still satisfies the boundary conditions (18), thus leading to

dy)
d¢

=1

Therefore, ¢} is a field that satisfies Poisson’s equation subjected to homogeneous Neumann boundary
conditions, namely

Ay (&) = v (©), (43)
(1)
) =0. (44)
d¢
=1

The solution of this problem can only exist if j; d€ w(ﬁO) (&) = 0.Itcan be checked that this is indeed the

case by using expressions (33). This is also compatible with the condition (13) that could be assumed to apply at
all orders of perturbation. In this case, there exists a GF, call it G(&', £), satisfying

11
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AcG(E, &) = —4ms(€ - &),
dé¢, &
d¢

The solution of the problem then reads [40]

1 (45)

¢=1

~ 1
¢E§1) (E) - *—41 f d&’ g(é/, 5)1/}%))(57) 95(9 :12 /w(l)( /) 9(2 5)
=1

__1 f g’ G, OV (&) + Dy,

where Dis a constant. In fact, we see that Q(E, ¢') is the solution of the same problem as G (&, &’) and, as such,
we may simply take G(&, &) = GO (€, ¢'). Inaddition, the constant D3 can be determined by assuming that the
spin mis-alignment vanishes at the center of the NM, i.e. 1/)8) (0) = 0. This yields, using

equation (28), Dy = ifv dg gO(o, €)¢E§)) & =0.

Finally, we obtain the solution
W@ = - [ g GO e @), (46)
47 Jv

Note that this result can also be obtained by proceeding through an expansion of the GF G3(§, n’) that
appears in equation (24), instead of the expansion in equation (42). This is done in appendix. Equation (46),
which derives from equation (43), suggests that 1/1%,)) acts as a source for the field wg).

Let us now discuss the explicit calculation of the components wg) (&) of the spin deviation. Note that in
equation (46), we have an integral over the volume and thereby none of the arguments of G (¢, ¢/) is fixed on
the surface. As a consequence, we have to use the exact expression (28), instead of the expansion (31).
Unfortunately, it is then difficult to obtain a closed analytical result for the integral in equation (46). On the other
hand, if we use instead the representation (46) in terms of the GF G\ in equation (A3), we again encounter an
integral over the volume of the product of two G, one of which has both arguments inside V. Consequently,
we can provide analytical (approximate) expressions for 2/1%1) (&) only for £ on the boundary 9V. This should
yield the largest contribution from ’(/J(l) (&), as one obtains for 1/12?) in equation(35), see below. For arbitrary &,
with 0 < £ < 1, we must resort to numerlcal integration.

For € on the boundary 9V, i.e.€ = n, we use equations (31) and (35) to derive the following expressions for
the components of 1) on the sphere:

Y (n, mg) ~ —ﬁ—[(n —n; )mOx + (n — nf)m(iy]. (47)

14 \/1 - mOz

The components of the largest spin deviation represented by the (total) vector 1), within a spherical NM with
equilibrium magnetic moment my, are obtained by substituting (35) and (47) into equation (42). This yields

2
K Mo,xMo,
(0, mg) = )\5( 1)7x —(n} — ny),

14 ) /1 — mOZ)Z

2
¥, (n, mg) = As(l — “2)&[0@% — nymg, + (ny — n2ymg . (48)

H \ll _m()2,z

Note that because of the factor 1 — x2 /14, these expressions are valid for x, < <14 =~ 3.74. However,
since they have been derived using an expansion in &,,, these expressions are actually valid for a much smaller x,
and the previous condition adds no new constraint.

We can also numerically compute the integral in (46) and then average over the solid angle. However,
although this procedure is quite affordable to today’s computers using optimized algorithms, it still remains
rather costly with regard to the CPU resources, especially when several curves are needed for comparison. Here,
we resort to the numerical solution of the LLE system, as done in the case of k. = 0, which allows for the full
procedure in an easier manner. Accordingly, in figure 6 we plot the deviation of the zcomponent of the net
magnetic moment, ém, = m,(r) — m,(0), averaged over the direction {2, as a function of the radial distance
r=(N —1)/2 x & fork;=0.3and k. = 0.01 (full lines) and k. = 0 (dashed lines). We recall that the uniaxial
anisotropy here is taken along the z axis. If it is taken along the cube diagonal, the deviations will be much
smaller. Indeed, we note that in the presence of anisotropy in the core with an easy axis in the z direction, the

12
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Magnetic moment deviation (6m;) averaged over Q Core correlation length (rc)
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Figure 6. (Left) Deviation of the net magnetic moment ém, = m,(r) — m,(0), averaged over the direction (2, as a function of the
radial distance r = (N — 1)/2 X &, fork, = 0.3 and k. = 0.01 (full lines) and k. = 0 (dashed lines). Note that, for the reasons
explained in the text, the maximum value of  is 0.95 and this is why the curves do not reach the last points at r = 30, 35, 40. (Right)
The core correlation length over which the core anisotropy dominates (see text). [No magnetic field].

state my is no longer along the cube diagonal; it is tilted towards the z axis by an angle that depends on the relative
strength of the core anisotropy (k.). This results in a competition between the core and surface anisotropies.

The results in figure 6 show that, both with and without core anisotropy, the overall spin deviations are
reduced when the NM size increases. In addition, here we see that for a given size N of the NM, the curves with
and without core anisotropy (same color) intersect at a given distance r. from the center of the NM. As discussed
earlier, the spin misalignments induced by the surface anisotropy tend to propagate from the boundary to the
center of the NM, while the effect of the core (uniaxial) anisotropy is to align the spins parallel to each other and
thus to push the spin misalignments out to the border. The competition between these two effects resultsina
critical radius r,, or core correlation length (indicated by the dashed vertical lines), over which the core
anisotropy dominates, thereby rendering a weaker spin deviation. This is illustrated by the fact that, for r < r,,
the continuous curves (k. = 0) are below the dashed ones (k. = 0). Furthermore, in the plot on the right, we see
that the distance r. increases with the radius R = (N — 1)/2 of the NM ; it behaves asa — b/R* with b > 0 (see
the fitting curve in red). So, as R increases the surface relative contribution decreases and the core anisotropy
then dominates and pushes the spin noncollinearities farther out towards the NM border. As a consequence, the
surface contribution to the overall anisotropy of the NM scales with the surface (~R?), as was discussed in [27].

4. Summary, Conclusions, and Outlook

We have built a formalism for solving the Helmholtz equation, with inhomogeneous Neumann boundary
conditions, satisfied by the spin deviation vector induced by surface anisotropy in a nanomagnet, using the
technique of Green’s functions in the continuum limit. The nanomagnet has been modeled as a spherical
crystallite of A/ atomic magnetic moments and whose energy comprises the exchange interaction, the Zeeman
contribution and the anisotropy energy that discriminates between spins in the core, attributed a uniaxial
anisotropy, and spins at the surface whose anisotropy is given by Néel’s model. We have also provided the
numerical solution of a system of coupled Landau-Lifshitz equations written for the atomic magnetic moments
and compared the results to those of the analytical approach. We have computed the solid-angle averaged
components of the nanomagnet’s net moment as a function of the distance to the NM center in the radial
direction, both in the absence and presence of anisotropy in the core. In the former case, we have provided good
approximate analytical expressions for the spin deviation at an arbitrary position within the nanomagnet. In the
latter case, however, the solution is only given numerically, either through a volume integral within the Green’s
function approach, or numerically by solving the Landau-Lifshitz equations. Nonetheless, an analytical solution
for this case has been given on the boundary of the NM, which represents the largest spin deviation. Both the
numerical and (semi-)analytical results show that the spin deviations induced by surface anisotropy are stronger
with larger surface anisotropy constant and/or smaller sizes.

As discussed in the introduction, the small-angle neutron scattering technique should provide us with a
relatively precise probe of a signature of spin deviations in nanomagnets. However, with real samples, we are
faced with various distributions (size, shape and anisotropy) and collective effects due to inter-particle
interactions which may lead to a smearing out of the surface effects and the entailed sought-for spin
misalignments. As a first step, we may consider doing measurements on an array of well separated platelets (or
thin cylinders), thus avoiding strong inter-particle interactions while ensuring enhanced surface contributions
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to the overall anisotropy. In parallel to these investigations, further theoretical endeavor is required in order to
take account of the inter-particle interactions together with other forms of anisotropy that might stem from
different shapes and internal structures of the nanomagnets (e.g. platelets). In this context, the present Green’s
function methodology may form the basis for computing the magnetic small angle neutron scattering cross-
section of nanomagnets according to their magnetic materials parameters.
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Appendix. Expansion of the Green’s function in the presence of core anisotropy
Similarly to the expansion of 9 in equation (42), we may write the GF G that appears in equation (24) as follows
(30]

Ga(mo, €, &) = GO(&, &) + Ko (mo, MGV, € + ... (A1)

Itis then easy to see, upon using equation (27), that the correction term G (¢, ¢') satisfies the following
equation (upon dropping terms in . )

AGD(E, €) ~ GO, &) (A2)

and that its solution can be written as a convolution
G(& &) = —— [ GO )6V €)% (A3)
7w Jv

with the boundary condition [using equation (29)]

dg®
d¢

_ ﬁ fv GOE", &) d¢". (A4)
=1

Then, in equation (26), we substitute the expansions for ¢)3(§) and Gs(§, n'), from equations (42) and (A1),
respectively, and identifying the terms of the same order in & g, we obtain the following two equations

d
PP = ﬁ . d2n’di; _ GO(E, )
da,
We-—4, dzn'di; G

Next, using (44) we recover equation (32) for the component 1/)([?) together with the following equation for

1
7/159)’
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WPE© = = ds(mo, )G, w), (43)
‘ 4 Jov
Then, replacing GV (&, n’) by its expression in equation (A3) leads to
1 1
(1) — 3¢ (2(0) 1" 2,/ NCO) el .
U (©) —vadg g <£,£>[—4ﬂ ygvdn Ss(m, n)G (£,n)]

Here, we recognize the term between brackets as wg)) ,according to equation (32), thus recovering (up to a
constant) the result obtained in equation (46). Note that the main difference between the two representations, is
that (46) is an integral over the volume of the NM whereas (A5) is an integral over its surface.
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