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Framework for polarized magnetic neutron scattering from nanoparticle assemblies
with vortex-type spin textures
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Within the framework of the recently introduced multinanoparticle power-series expansion method for the po-
larized small-angle neutron scattering (SANS) cross section, we present analytical expressions for the polarized
SANS observables arising from dilute nanoparticle assemblies with antisymmetric vortex-type spin structures.
We establish connections between the magnetic correlation coefficients and the magnetic field-dependent vortex-
axes distribution function, which is related to the random orientations of the magnetocrystalline anisotropy axes
of the nanoparticles. Our analytical results are validated through a comparative analysis with micromagnetic
simulations. This framework contributes to a comprehensive understanding of polarized magnetic neutron
scattering from spherical nanoparticle systems exhibiting vortex-type spin structures.
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I. INTRODUCTION

Magnetic nanoparticles, which are within the scope of im-
mense interdisciplinary research, offer versatile applications,
e.g., in materials science, nanotechnology, and biomedicine
[1–7]. They open up new possibilities in the nanoscopic realm
and drive technological advances and breakthrough discover-
ies. But still, at the current stage of research, it is an immense
challenge to characterize their internal spin structure, which is
generally expected to be nonuniform (e.g., [8–16]).

Magnetic small-angle neutron scattering (SANS) is pos-
sibly the only technique to probe the spatial variation of
spin structures on a scale of ∼1–100 nm and in the bulk
of the material [17,18]. Recent advances in the understand-
ing of magnetic SANS from complex nanoparticle systems
have been achieved by the marriage of micromagnetic theory
and the magnetic neutron scattering formalism, through both
computer simulations and analytical calculations [19–27].
Although computer simulations offer considerable potency
in predicting neutron scattering observables for intricate
nanoparticle assemblies, their drawback lies in their time-
intensive nature, vast parameter space, and the inherent
challenge of interpreting results. This complexity hinders the
derivation of overarching conclusions and poses a substantial
obstacle in formulating generalized statements.

To address these challenges, Adams et al. [28] introduced
the multinanoparticle power-series expansion (MNPSE)
method to study the neutron scattering signatures from
spherical nanoparticle assemblies featuring diverse types of
magnetic surface anisotropy. Here, we use the MNPSE ap-
proach to predict the main features of nanoparticle assemblies
with inherent vortex-type spin textures such as those seen
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in the neutron scattering observables. Vortex-type structures
are ubiquitous in magnetism research and are encountered
in many systems, such as in type-II superconductors [29],
GdCo2 micropillars [30], Nd-Fe-B magnets [31], iron oxide
nanoparticles [32–34], and nanoflowers [35], or the very re-
cently discovered topological vortex rings in a chiral magnetic
nanocylinder [36]. Our results, which replace the conventional
analytical formulation for the superspin model, enable the
straightforward prediction of the spin-flip SANS cross section
Isf (q) and the corresponding spin-flip pair-distance distribu-
tion function psf (r) arising from spatially antisymmetric spin
structures, such as nanovortices, through easily applicable
analytical expressions.

The paper is organized as follows: We start out by ana-
lyzing the main features of the first-order MNPSE method
for the spin-flip SANS cross section and the pair-distance
distribution function (Sec. II). This approach is valid for an
arbitrary linear magnetization distribution. Subsequently, for
the particular case of a linear vortex, we derive analytical
expressions for the two- and one-dimensional SANS observ-
ables (Sec. III). The analytical expressions are compared to
the results of micromagnetic computations. Section IV sum-
marizes the main findings of this study. We refer to the
Supplemental Material [37] for details regarding the analytical
derivations and the micromagnetic SANS simulations (see
also Refs. [38–40] therein).

II. LINEAR MNPSE METHOD

This approach is based on the following expansion for the
magnetization vector field:

M′(r′) =
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FIG. 1. “Phase diagram” for the azimuthally averaged spin-flip SANS cross section Isf (q) [Eq. (2)] and for the spin-flip pair-distance
distribution function psf (r) [Eq. (3)] within the limits of the first-order magnetization model. The left panel shows the analytical results,
while the right panel features the corresponding results of the micromagnetic simulations. The ratio ι of the zero-order coefficient I0

sf and the
first-order coefficient I1

sf determines the appearance of vortex-type spin structures. Field (B0 = μ0H0) variations in the simulations correspond
to ι variations in the analytical part (zero field: ι → ∞; saturation: ι → 0). (a) Color-coded plot of the normalized Isf (q) as a function of
ι = I1

sf/I0
sf and qR. The black solid line in (a) describes the shift of the maximum in Isf (q) towards qmax

∼= 2.50/R [white dashed line, compare
(e)]. (b) Normalized psf (r) as a function of ι and r/R. The black solid line in (b) describes the shift of the zero in psf (r) towards rz

∼= 1.07R
[white dashed line, compare (f)]. (c) Normalized Isf (qR) and (d) normalized psf (r/R) for different ι [see the inset in (d)]; the inset in (c) displays
Isf (q)/Imax

sf for 4 < qR < 10. The colored horizontal lines in (a) and (b) correspond, respectively, to the curves in (c) and (d).

where r′ = [x′, y′, z′] denotes the position vector in the local
particle frame. The model consists of 12 expansion coeffi-
cients per particle, i.e., three zero-order coefficients mi

0 and
nine first-order coefficients m jk

1 . For a dilute assembly of
spherical nanoparticles, the MNPSE formalism yields the
following expression for the azimuthally averaged spin-flip
SANS cross section [28,37]:

Isf (q) = I0
sf f (qR)2 + I1

sf f ′(qR)2, (2)

where R is the particle radius, and the field-dependent co-
efficients I0

sf and I1
sf represent complicated averages of the

magnetization coefficients mi
0 and m jk

1 over the particle as-
sembly and over the detector plane. The corresponding basis
functions are given by (u = qR)

f (u) = sin u − u cos u

u3
,

f ′(u) = df

du
= (u2 − 3) sin u + 3u cos u

u4
.

Here, f (u) is the form-factor function of the unit sphere
[18], and f ′(u) is the related first-order derivative. By in-
verse Fourier transformation, we find from Eq. (2) the related

pair-distance distribution function [37]:

psf (r) = I0
sf

πr2

6R3

[
1 − 3r

4R
+ r3

16R3

]
+ I1

sf
πr2

10R3

[
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4R
+ 5r3
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− r5

32R5

]
. (3)

While the zero-order contribution (I0
sf ) arises from symmetric

(parallel, positive) correlations only, the first-order contri-
bution (I1

sf ) contains antisymmetric (antiparallel, negative)
correlations. By comparison to micromagnetic simulations
using Mumax3 [41,42]—including isotropic exchange, a ran-
dom cubic anisotropy [43], the Zeeman interaction, and
the demagnetizing field—we find that this linear approach
[Eqs. (2) and (3)] already captures the main features of vortex-
type spin textures seen in the SANS observables.

The results that are embodied by Eqs. (2) and (3) are sum-
marized in Fig. 1. Prominent features regarding vortex-type
spin structures are the decreased spin-flip scattering inten-
sity Isf (q) at momentum transfer q = 0 [see Figs. 1(a), 1(c),
1(e), and 1(g)] and the damped oscillatory behavior of the
pair-distance distribution function psf (r) exhibiting negative
(antiparallel) correlations related to a vortex [see Figs. 1(b),
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1(d), 1(f), and 1(h); compare to [23,31,44]]. In the limiting
case of ι = I1

sf/I0
sf → ∞ (modeling the remanent state) our

linear theory predicts a maximum of Isf (q) at qmax
∼= 2.50/R

[maximum of [ f ′(u)]2]. This prediction is in excellent agree-
ment with the result from our micromagnetic simulations,
where we find qmax(B0 = 0 T) ∼= 2.50/R [see Fig. 1(g)]. Fur-
thermore, the relevant zero of psf (r) is predicted as the result
of the following cubic equation that is derived from Eq. (3):

ν3 + 4ν2 +
(

2 − 10

3ι

)
ν −

(
8 + 40

3ι

)
= 0, (4)

where ν = r/R. For ι → ∞, Eq. (4) predicts the zero at
rz

∼= 1.07R, whereas in our micromagnetic simulations we
find rz(B0 = 0 T) ∼= 1.03R [see Fig. 1(h)].

Beyond these limits for the momentum transfer qmax and
the “zero” correlation length rz we find two specific transi-
tion points for ι in the two-dimensional (2D) maps shown
in Figs. 1(a) and 1(b). In Fig. 1(b) we observe for ι > 1 the
occurrence of negative correlations [negative values of psf (r)],
and in Fig. 1(a) we see that the scattering intensity at the origin
of reciprocal space, Isf (q = 0)/Imax

sf , is constant for ι < 5 and
decreases for ι > 5. The micromagnetic simulation results
reveal an analogous behavior [compare Figs. 1(e) and 1(f)].

III. MNPSE METHOD: THE CASE OF A LINEAR VORTEX

In the formulation of the linear MNPSE method, the pa-
rameters I0

sf and I1
sf [in Eqs. (2) and (3)] are arbitrary functions

of the 12 magnetization expansion coefficients in Eq. (1). In
the following, we aim to adapt the linear MNPSE method
to include physically motivated parameters (replacing I0

sf and
I1
sf ). This approach allows us to obtain a scattering model

that is more closely related to the underlying micromagnetic
Hamiltonian in the sense that it contains information on the
vortex helicity, on the orientation distribution of the vortex
axes, and on the transformation behavior of the energies in
the Hamiltonian under space inversion.

We consider a dilute assembly of noninteracting spherical
nanoparticles that are rigidly embedded in a homogeneous and
nonmagnetic matrix. Each particle is assumed to have a ran-
dom orientation of its (cubic or uniaxial) magnetic anisotropy
axis with respect to the externally applied magnetic field
H0 ‖ ez, which defines the laboratory frame of reference. In
addition to magnetic anisotropy and the Zeeman interaction,
we consider an isotropic exchange energy and, most impor-
tantly, the magnetodipolar interaction (see the Supplemental
Material [37]). When the spin structure of such a spherical
nanoparticle is computed starting from saturation, we always
find—using the material parameters of iron—a vortex-type
texture at low fields and for particle sizes larger than about
20 nm [23,44]. It is the dipolar interaction that is responsible
for the vortex formation.

Based on these simulation results, and with the aim to
obtain an approximate expression for the spin-flip SANS cross
section of an ensemble of vortex-carrying randomly oriented
nanoparticles, we introduce a magnetization model with a uni-
form (constant) part of magnitude m0 and a linear vortex term
of magnitude m1. More specifically, the basic magnetization

vector field is written as

M′(r′) = m0e′
z + m1v(r′), (5)

where e′
z = [0, 0, 1] is the unit vector in the z′ direc-

tion, v(r′) = [−y′, x′, 0] is the linear vortex field, and r′ =
[x′, y′, z′] is the position vector with reference to the local
vortex frame. Compared to Eq. (1), the number of expansion
coefficients in Eq. (5) has been reduced to two. A positive
m1 indicates a counterclockwise (CCW) or right-handed sense
of rotation, while a negative m1 corresponds to a clockwise
(CW) or left-handed sense of rotation. We note that for a mi-
cromagnetic Hamiltonian that contains the isotropic exchange
interaction, magnetic anisotropy, the Zeeman, and magne-
todipolar interaction, there exists no preference for CCW or
CW vortex rotation senses in the particles. CCW and CW
vortices appear with equal probability so that the chiral func-
tion averages to zero (see below). However, by including
the Dzyaloshinskii-Moriya interaction (DMI), which breaks
space-inversion symmetry, chirality selection takes place and
leads to a nonzero chiral function [45].

Equation (5) models a linear vortex in the local vortex
frame. We introduce a zy rotation matrix R(α, β ) that trans-
forms the local magnetization M′ into the laboratory frame
of reference, where α and β denote the (global) polar and
azimuthal angles, respectively. The resulting global magne-
tization vector field is then obtained as

M(r; α, β ) = R(α, β ) · M′(RT (α, β ) · r). (6)

Using Eq. (6) in the MNPSE method [37], we define the
ensemble-averaged (dilute) SANS cross sections as

〈
d�sf,χ

d	

〉
= 1

2

∫ 4π

0

[
d�CCW

sf,χ

d	
+ d�CW

sf,χ

d	

]
ψ (α, β )dϒ, (7)

where dϒ = sin αdαdβ is the solid-angle differential, and
d�CCW

sf,χ

d	
(q; α, β ) and

d�CW
sf,χ

d	
(q; α, β ) are the SANS cross sec-

tions referring to two nanoparticles with the same orientation
(α, β ), but opposite senses of vortex rotation (mCCW

1 =
−mCW

1 ). The function ψ (α, β ) is a field-dependent probability
distribution that models the orientation of both the CCW and
CW vortex rotation axes (no distinction between the different
polarities); its origin is related to the distribution of the net
magnetization vectors of the nanoparticles. For simplicity, we
assume a uniform distribution ψu on the spherical surface,
which is limited by a field-dependent conical opening an-
gle 0◦ � αc � 90◦. The azimuthally symmetric distribution is
then given by (see [37] for details)

ψu(α, β ) = �(1 − α/αc)

2π (1 − cos αc)
, (8)

where �(ξ ) is the Heaviside function. In the fully saturated
case (B0 → ∞) it follows that αc → 0, and αc increases with
decreasing applied magnetic field. By inserting Eqs. (5)–
(8) into the formalism of the MNPSE method, we obtain
the following final expressions for the randomly averaged
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FIG. 2. Illustration of the 2D (normalized) spin-flip SANS cross section and chiral function computed from Eqs. (9) and (10) reflecting
the saturation and remanence cases (particle size: D = 2R = 40 nm) (linear color scale). Parts (a), (b) and (g), (h) show snapshots of the
underlying real-space spin structures. The left panel shows the analytical results, while the right panel features the results of the micromagnetic
simulations. The incoming neutron beam (‖ ex) is perpendicular to the applied magnetic field H0 ‖ ez (B0 = μ0H0). The maximum of the
spots in (d) and (j) is found at qy,max

∼= 2.50/R. Parts (e), (f) and (k), (l) display the respective chiral functions in the remanent state for
counterclockwise (CCW) and clockwise (CW) vortex rotations. Note that the specific values for αc = 27◦ and for the ratio m1/m0 = 0.7 in
(d) are based on a fit of the analytical function [Eq. (9)] to the 2D simulation data shown in (j). The value of αc = 27◦ corresponds to an applied
field of ∼0 mT.

2D spin-flip SANS cross section and chiral function [37]:〈
d�sf

d	

〉
(q, θ ) = W

8
[m0 f (qR)]2 × [12 − (cos2 αc + cos αc)[3 cos2(2θ ) + 2 cos(2θ ) + 3] + 4 cos(2θ )]

+ W

2
[Rm1 f ′(qR)]2 × [3 − (2 cos2 αc + 2 cos αc − 1) cos(2θ )], (9)〈

d�CCW,CW
χ

d	

〉
(q, θ ) = ±W [Rm0|m1| f (qR) f ′(qR) cos θ ] × [4 + cos2 αc + cos αc − 3(cos2 αc + cos αc) cos2 θ ], (10)

where W is a scaling constant. In Eq. (10) we have separated
the chiral function into CCW (“+” sign) and CW (“−” sign)
contributions. For the here-considered micromagnetic energy
contributions [37] (with no chirality selection taking place), it
then follows that

〈
d�χ

d	

〉
= 1

2

[〈
d�CCW

χ

d	

〉
+

〈
d�CW

χ

d	

〉]
= 0. (11)

Figure 2 displays Eqs. (9) and (10). At saturation [Figs. 2(a)
and 2(c) and Figs. 2(g) and 2(i)], with αc = 0◦ and m1/m0 =
0, the spin-flip SANS cross section exhibits the well-known
sin2 θ cos2 θ angular anisotropy. At remanence [Figs. 2(b) and
2(d) and Figs. 2(h) and 2(j)], with αc = 27◦ and m1/m0 = 0.7,
we observe for the spin-flip signal an anisotropy that strongly
differs from the saturated case, with maxima for θ = 90◦.
This observation strongly suggests that the magnetization
Fourier components are anisotropic, i.e., M̃x,y,z = M̃x,y,z(q, θ )
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[compare to Eq. (4) in [37]]. Consequently, to not lose this
information, the experimental data analysis should be con-
centrated on 2D spin-flip data rather than on the azimuthally
averaged 1D data. In micromagnetic simulations of spherical
nanoparticles, very similar scattering patterns were observed
[27,46].

Averaging Eq. (9) over the angle θ , i.e., (2π )−1∫ 2π

0 (· · · )dθ , yields the 1D quantity [37]

〈Isf〉(q) = 3W

16
[m0 f (qR)]2(8 − 3 cos2 αc − 3 cos αc)

+ 8
3W

16
[m1R f ′(qR)]2. (12)

By comparison to Eq. (2) we note that the new parameters m0,
m1, and αc in Eqs. (9) and (10) are related to the coefficient
ratio I1

sf/I0
sf as follows:

ι = I1
sf

I0
sf

= 8m2
1R2

m2
0(8 − 3 cos2 αc − 3 cos αc)

, (13)

which emphasizes the importance of the vortex-axes distribu-
tion function. The angle αc may be obtained from the analysis
of (preferentially 2D) experimental spin-flip SANS data [com-
pare to Figs. 2(d) and 2(j) and the video clip in [37]].

The here-presented linear vortex model is applicable in
cases in which the vortex exhibits a single modulation over
the particle radius (with a maximum spin-rotation angle from
about 0◦ to 90◦ from the center to the surface). For the
case of skyrmions, which are expected to form in larger
nanoparticles with broken spatial inversion symmetry, a larger
rotation angle (by about 180◦) may occur so that higher-order
terms should be taken into account in the MNPSE expansion.
Moreover, as mentioned earlier, we expect the formation of

dipolar-energy-driven vortex structures in nanoparticles with
a size (diameter) that is significantly larger than the respective
single-domain limit [23].

IV. CONCLUSION

In this paper, we have demonstrated that the linear MNPSE
approach captures the main effects in the spin-flip SANS
cross section and pair-distance distribution function stemming
from dilute assemblies of spherical nanoparticles exhibiting
vortex-type spin textures. A crucial insight is that the linear
functionality represents the most important contribution to
the magnetic neutron scattering cross section. Based on the
specific case of a linear vortex model, we have derived analyt-
ical expressions for the 2D and 1D spin-flip and chiral cross
sections of an ensemble of randomly oriented vortex-carrying
nanoparticles. The maximum of the spin-flip scattering in-
tensity and the zero of the pair-distance distribution function
appear, respectively, at momentum transfer qmax

∼= 2.50/R
and position rz

∼= 1.07R, where R denotes the radius of the
spherical nanoparticles. The analytical predictions, which en-
able, e.g., the determination of the field-dependent conical
opening angle αc of the vortex-axes distribution from exper-
imental data, are in very good agreement with the results of
micromagnetic simulations. The chiral SANS cross section is
sensitive to the vortex rotation sense, but in a many-particle
system with no chirality selection, it averages to zero (as
expected). A candidate for chirality selection is the DMI in-
teraction that breaks space-inversion symmetry.
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In this Supplemental Material we sketch the main ideas of the multi-nanoparticle power-series
expansion (MNPSE) method that is used for the analytical calculation of the spin-flip SANS cross
section, the chiral function, and the pair-distance distribution function. Moreover, the main expres-
sions for the polarized SANS cross sections are displayed and details on the numerical micromagnetic
simulations are furnished.

I. SCATTERING GEOMETRY AND SPIN-FLIP SANS CROSS SECTION

The quantities of interest in the present paper are the elastic differential spin-flip scattering cross section and the
related so-called chiral function, which are usually obtained in an uniaxial polarization-analysis experiment (e.g.,
[1–5]). For the most commonly used scattering geometry in magnetic SANS experiments (compare Fig. 1), where the
applied magnetic field H0 ∥ ez is perpendicular to the wave vector k0 ∥ ex of the incident neutrons, the two spin-flip
SANS cross sections dΣ+−

sf /dΩ and dΣ−+
sf /dΩ can be written as [6]:

dΣ+−
sf

dΩ
=

8π3

V
b2H

(
|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ − (M̃yM̃

∗
z + M̃∗

y M̃z) sin θ cos
3 θ − iχ

)
, (1)

dΣ−+
sf

dΩ
=

8π3

V
b2H

(
|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ − (M̃yM̃

∗
z + M̃∗

y M̃z) sin θ cos
3 θ + iχ

)
. (2)

The superscripts “+” and “−” refer to the neutron-spin orientation (parallel or antiparallel) relative to the di-
rection of H0, V denotes the scattering volume, bH = 2.91 × 108 A−1m−1 is the magnetic scattering length in
the small-angle regime (the atomic magnetic form factor is approximated by 1, since we are dealing with for-
ward scattering), M̃(q) = [M̃x(q), M̃y(q), M̃z(q)] represents the Fourier transform of the magnetization vector field
M(r) = [Mx(r),My(r),Mz(r)], θ denotes the angle between q and H0, the asterisk “∗” marks the complex-conjugated
quantity, i2 = −1, and χ = χ(q) is the chiral function. The latter quantity is obtained from (one-half times) the
difference between the two spin-flip SANS cross sections, according to [6]:

dΣχ

dΩ
= −iKχ(q) = 1

2

(
dΣ+−

sf

dΩ
−
dΣ−+

sf

dΩ

)
(3)

= −iK
[
(M̃xM̃

∗
y − M̃∗

xM̃y) cos
2 θ − (M̃xM̃

∗
z − M̃∗

xM̃z) sin θ cos θ
]
,

where K = 8π3

V b2H. Note that the chiral function vanishes at complete magnetic saturation (MH0→∞
x =MH0→∞

y = 0)
and for purely real-valued or for purely imaginary magnetization Fourier components M̃x,y,z.

Besides the difference between dΣ+−
sf /dΩ and dΣ−+

sf /dΩ, we can also consider (one-half times) their sum:

dΣsf

dΩ
=

1

2

(
dΣ+−

sf

dΩ
+
dΣ−+

sf

dΩ

)
(4)

= K
(
|M̃x|2 + |M̃y|2 cos4 θ + |M̃z|2 sin2 θ cos2 θ − (M̃yM̃

∗
z + M̃∗

y M̃z) sin θ cos
3 θ

)
.

We note that the magnetization Fourier components are in general functions of q and θ, i.e., M̃x,y,z = M̃x,y,z(q, θ).
The quantity dΣsf/dΩ is called the (polarization-independent) spin-flip SANS cross section. The following symmetry
relations hold for dΣsf/dΩ (even under spatial inversion of q) and dΣχ/dΩ (odd under spatial inversion of q):

dΣsf

dΩ
(q) =

dΣsf

dΩ
(−q), (5)
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FIG. 1. Sketch of the neutron scattering geometry. The neutron optical elements (polarizer, spin flipper, analyzer) that are
required to measure the spin-flip SANS cross section are not drawn. The applied magnetic field H0 ∥ ez is perpendicular to
the wave vector k0 ∥ ex of the incident neutron beam (H0 ⊥ k0). The momentum-transfer or scattering vector q is defined
as the difference between k0 and k1, i.e., q = k0 − k1. SANS is usually implemented as elastic scattering (k0 = k1 = 2π/λ),
and the component of q along the incident neutron beam, here qx, is much smaller than the other two components so that
q ∼= [0, qy, qz] = q[0, sin θ, cos θ]. This demonstrates that SANS probes predominantly correlations in the plane perpendicular
to the incident beam. For elastic scattering, the magnitude of q is given by q = (4π/λ) sin(ψ), where λ denotes the mean
wavelength of the neutrons and 2ψ is the scattering angle. The angle θ = ∠(q,H0) is used to describe the angular anisotropy
of the recorded scattering pattern on the two-dimensional position-sensitive detector.

dΣχ

dΩ
(q) = −dΣχ

dΩ
(−q). (6)

It is often convenient to average two-dimensional SANS data f(q) = f(qy, qz) = f(q, θ), where f either stands for
dΣsf/dΩ or for dΣχ/dΩ, along certain directions in q space, e.g. parallel (θ = 0) or perpendicular (θ = π/2) to the
applied magnetic field, or even over the full angular θ range. In this paper, we consider 2π azimuthally-averaged
SANS data

Isf(q) =
1

2π

∫ 2π

0

f(q, θ) dθ, (7)

which allows for the computation of the pair-distance distribution function psf(r) according to

psf(r) = r

∞∫
0

Isf(q) sin(qr)qdq. (8)

This Fourier transform corresponds to the distribution of real-space distances between volume elements inside the
particle weighted by the excess scattering-length density distribution. As a reference for nonuniformly magnetized
spherical particles, we specify here the psf(r) of a uniformly magnetized sphere, which for r ≤ D = 2R equals:

psf(r) ∝ r2
(
1− 3r

4R
+

r3

16R3

)
. (9)

For the calculation of the spin-flip SANS cross section dΣsf/dΩ [Eq. (4)] and the chiral function dΣχ/dΩ [Eq. (3)], it
is necessary to compute the discrete Fourier transform of all the mi = mi(r) belonging to the spherical nanomagnet.
Using µi = µi(r) =MsVimi(r), the discrete-space Fourier transform is computed as (Vi = a3):

M̃(q) ∼=
Msa

3h(q)

(2π)3/2

K∑
i=1

mi exp (−iq · ri) , (10)

where ri is the location point of the ith spin and q represents the wave vector (scattering vector). The function

h(q) =
sin(qxa/2)

qxa/2

sin(qya/2)

qya/2

sin(qza/2)

qza/2
(11)
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denotes the form factor of the cubic discretization cell with a = 2nm being the cell size; for |qx,y,z|a/2 ≪ 1, h → 1.
For atomistic calculation [7, 8], this correction is irrelevant in the small-angle regime, but for the present calculation,
the cell size becomes already noticeable for q ≳ 0.3 nm−1. Equation (10) establishes the relation between the outcome
of the simulations, mi, and dΣsf/dΩ and dΣχ/dΩ. The Fourier components are evaluated in the plane qx = 0
(corresponding to the scattering geometry shown in Fig. 1 with q ∼= [0, qy, qz] = q[0, sin θ, cos θ]) and used in Eqs. (3)
and (4) to compute the spin-flip SANS cross section and the chiral function.

II. DETAILS ON THE MICROMAGNETIC SIMULATIONS

We were using the open-source software package Mumax3 (version 3.10) for the micromagnetic simulations [9, 10].
This program is a widely used micromagnetic simulation tool that enables researchers to investigate the static and
dynamic nanoscale behavior of magnetic materials. Mumax3 employs a finite-difference discretization scheme of
space using an orthorhombic grid of cells. The following contributions to the total magnetic Gibbs free energy
G = Ez + Ed + Eani + Eex were taken into account: Zeeman energy Ez in the external magnetic field, dipolar
(magnetostatic) interaction energy Ed, energy of the (cubic) magnetocrystalline anisotropy Eani, and the isotropic
and symmetric exchange energy Eex. The continuum expressions for these energies are the following [11]:

Ez = −µ0Ms

∫
m ·H0 dV, (12)

Ed = −1

2
µ0Ms

∫
m ·Hd dV, (13)

Eani = Kc1

∫ [
(c1 ·m)2(c2 ·m)2 + (c1 ·m)2(c3 ·m)2 + (c2 ·m)2(c3 ·m)2

]
dV, (14)

Eex = A

∫ [
(∇mx)

2 + (∇my)
2 + (∇mz)

2
]
dV, (15)

where µ0 = 4π × 10−7 Tm/A, m(r) = M(r)/Ms denotes the unit magnetization vector field with Ms being the
saturation magnetization, H0 is the (constant) applied magnetic field, Hd = Hd(r;M(r)) is the magnetostatic self-
interaction field, Kc1 is the first-order cubic anisotropy constant with the c1,2,3 vectors representing the local (mutually
perpendicular) cubic anisotropy axes [12], A is the exchange-stiffness constant, and the integrals are taken over the
volume of the sample. In the simulations, we used the following material parameters for iron: Ms = 1700 kA/m,
Kc1 = +4.7 × 104 J/m3, and A = 1.0 × 10−11 J/m. These values result in a magnetostatic exchange length of
ls =

√
2A/(µ0M2

s ) = 2.3 nm and in a domain-wall parameter of lk =
√
A/Kc1 = 14.6 nm. We refer to Ref. [9] for

a discussion of how the above continuum expressions for the magnetic energies are numerically implemented on a
discrete spatial grid.

We carried out simulations for a sphere diameter of D = 40nm. The sphere volume was discretized into cubical cells
“i” with a size (volume) of Vi = 2×2×2 nm3 (finite-difference method). This cell size is motivated by the above values
for ls and lk and by the aim to resolve spatial variations in the magnetization that are smaller than these characteristic
length scales. In each cell “i” with volume Vi, the magnetic moment vector is given by µi = µi(r) = MsVimi(r),
where mi(r) is a unit vector along the local direction of the magnetization. Open boundary conditions were used.
We are interested in the scattering behavior of an ensemble of noninteracting particles having random easy-axis
orientations; 800 random orientations between the cubic anisotropy axes and H0 were used to compute randomly-
averaged quantities. All simulations were carried out by first saturating the nanoparticle by a strong external field
H0, and then the field was decreased in steps of typically 5mT following the major hysteresis loop. For each step
of H0 and for each particular easy-axis orientation, we have obtained the equilibrium spin structure mx,y,z(x, y, z)
by employing both the “Relax” and “Minimize” functions of Mumax3. The former solves the Landau-Lifshitz-Gilbert
equation without the precessional term and the latter uses the conjugate-gradient method to find the configuration
of minimum energy.

Using the results of the Mumax3 simulations, we determine the vortex rotation axis vector a of a particular
magnetization structure by employing a linear least-squares method. For this analysis, we assume the following linear
magnetization function:

mlin(r) =

mx
0

my
0

mz
0

+

mxx
1 mxy

1 mxz
1

myx
1 myy

1 myz
1

mzx
1 mzy

1 mzz
1

 ·

xy
z

 , (16)
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and minimize the following mean-square-error function:

ϵ =
1

n

n∑
k=1

∥mk −mlin(rk)∥2, (17)

where mk is the magnetization vector of the simulation cell “k”, rk is the corresponding position vector, and n denotes
the number of discretization cells of an individual particle. The minimization of ϵ is achieved by solving the following
system of linear equations (with κ ∈ {x, y, z}):

Axκ = vκ, (18)

with the system matrix

A =

n∑
k=1

[
1 rTk
rk rk ⊗ rk

]
, (19)

the coefficient vector

xκ =
[
mκ

0 mκx
1 mκy

1 mκz
1

]T
, (20)

and the constant vector

vκ =

n∑
k=1

[
mκ

k
mκ

krk

]
. (21)

The normalized rotation axis vector a is then computed from the curl of the linear magnetization function [Eq. (16)]
as follows

a =
∇×mlin

∥∇ ×mlin∥
=

[mzy
1 −myz

1 , m
xz
1 −mzx

1 , myx
1 −mxy

1 ]√
(mzy

1 −myz
1 )2 + (mxz

1 −mzx
1 )2 + (myx

1 −mxy
1 )2

. (22)

In the fully saturated state, the vector a does not exist since the magnetization is uniform.
Figure 2 displays micromagnetic simulation data for the vortex profile in the remanent state. It is seen that the

radial component mρ is equal to zero over the particle radius (on the average), while the tangential component mβ

increases to unity (due to flux closure), and the magnetization component mz decreases from about unity at the
sphere center to a slightly negative but constant value at the radius. Figure 8 shows the corresponding results for a
uniaxial particle anisotropy (Fig. 2 is for a cubic particle anisotropy).

The vortex-axes distribution function ψ(α, β), for use in Eq. (74) to compute the spin-flip SANS cross section and
chiral function, is extracted from the Mumax3 simulation data using the following recipe: (i) We assume a given set of
nonzero random vectors mk = [mk

x,m
k
y ,m

k
z ] with k = {1, 2, 3, ...,K}. These random vectors are represented by either

the easy axes of the particles, their net magnetizations, or their vortex axes [see Fig. 3(a,b,c)]. (ii) We compute the
corresponding set of spherical angles

αk = arctan2
(√

(mk
x)

2 + (mk
y)

2,mk
z

)
, (23)

βk = arctan2
(
mk

y ,m
k
x

)
, (24)

which are plotted in Fig. 3(d,e,f). (iii) We define a rectangular grid

αµ = hµ+ h/2, µ = {0, 1, 2, ..., N − 1}, (25)
βν = hν + h/2, ν = {0, 1, 2, ..., 2N − 1}, (26)

where h = π/N is the step size (the grid consists of N ×2N squares of side length h, where the (αµ, βν) are the center
points of the squares). (iv) From the data set (αk, βk) we compute the empirical probability Pµν corresponding to
the binning (αµ, βν):

Pµν =
1

K

K∑
k=1

δµν(α
k, βk), (27)

δµν(α
k, βk) =

{
1 , if (−h/2 < αk − αµ < h/2) ∧ (−h/2 < βk − βν < h/2)

0 , else
. (28)
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FIG. 2. (a) Example for a real-space spin structure in the remanent state (B0 = 0T). (b) Vortex profile in the remanent
state. The data points represent the collective magnetization data of 10 nanoparticles with 4224 magnetic moments each with
reference to their individual vortex reference frame. The orientation of the cubic anisotropy varies randomly from particle to
particle (particle size is 40 nm, discretized into 2× 2× 2 nm3). Initially all structures were saturated by a strong applied field
H0 ∥ ez. The cylindrical components of the magnetization, mρ,mβ ,mz, are represented as a function of the cylinder radius
ρ =

√
x2 + y2 and follow the constraint that m2

ρ +m2
β +m2

z = 1. The azimuthal component mβ and the axial component mz

approximately follow hyperbolic tangent and secant functions, respectively.

The summation over the Pµν is equal to unity:

N−1∑
µ=0

2N−1∑
ν=0

Pµν = 1. (29)

(v) By normalizing the empirical probability, we estimate the spherical probability distribution ψµν as follows:

ψ(αµ, βν) ≈ ψµν =
Pµν

h2 sin(αµ)
,

[
spherical normalization

∫ 2π

0

∫ π

0

ψ(α, β) sinα dαdβ = 1

]
. (30)

(vi) By assuming azimuthal symmetry, we can improve the statistics by averaging (integration using the trapezoidal
rule) and rescaling by the factor (2π)−1:

ψ(α, β) ≈ ψµ =
1

2π

h

2

2N−2∑
ν=0

(ψµ,ν + ψµ,ν+1),

[
azimuthal symmetry: ψ(α, β) =

1

2π

∫ 2π

0

ψ(α, β)dβ

]
(31)

(vii) The resulting numbers ψµ are displayed in Fig. 3(g,h,i). In Fig. 3(g) we show that, for the case of a uniform
distribution on the spherical surface, the probability distribution function ψ(α, β) = (4π)−1. This result is reasonable
due to the spherical normalization foe the probability distribution function ψ.

III. MULTI-NANOPARTICLE POWER-SERIES EXPANSION (MNPSE) METHOD FOR THE
POLARIZED SANS CROSS SECTION

For the sake of self-contained presentation, we repeat here the main steps of the MNPSE approach [8].

A. Magnetization power-series expansion, Fourier cross-correlation matrix, and spin-flip SANS cross section

We consider an ensemble of magnetic nanoparticles rigidly embedded in a nonmagnetic and homogeneous matrix.
The global magnetization vector field of the system, M(r) = [Mx(r),My(r),Mz(r)], is generally a discontinuous
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FIG. 3. Distribution of (a) the cubic anisotropy axes/applied fields, (b) the net (average) magnetization vectors, and (c) the
vortex rotation axes vectors on the unit sphere at remanence. Initially all structures were saturated by a strong applied field
H0 ∥ ez. Data of 800 particles with random cubic anisotropy are shown. α and β in (d,e,f) denote the respective polar
and azimuthal angles [computed according to Eqs. (23) and (24)]. The anisotropy axes are randomly distributed over the
whole unit sphere and follow a ψ(α, β) = (4π)−1 distribution function (g). The net magnetization vectors at remanence, m, are
azimuthally-symmetric (β independent) and bound by α ≲ 45◦ (h). The uniaxial vortex rotation axes a are symmetrically bound
by 0◦ ≲ α ≲ 45◦ and 135◦ ≲ α ≲ 180◦ and (for α ≲ αc = 45◦) approximately follow a ψ(α, β) = Θ(1− α/αc)/[2π(1− cosαc)]
distribution (i). The vortex axes in the upper hemisphere (α < 90◦) correspond to a mathematically positive rotation in the
xy plane and vice versa for the lower hemisphere (α > 90◦).

function, since M vanishes in the space between the particles; r = [x, y, z] is the position vector in the laboratory
frame. For the formulation of this discontinuous behavior, we use the indicator function (or particle shape function
with particle index ν)

Sν(r
′
ν) =

{
1 , r′ν ∈ V ′

ν

0 , r′ν /∈ V ′
ν

, (32)

where V ′
ν ⊂ R3 denotes the set of points within the ν-th particle volume with reference to the local particle frame,

and r′ν = [x′ν , y
′
ν , z

′
ν ] represent the local coordinates (see Fig. 4). The transformation between the global point

set Vν and the local point set V ′
ν is then obtained by V ′

ν = {r − aν : r ∈ Vν} (with the inverse transformation:
Vν = {r′ν + aν : r′ν ∈ V ′

ν}), where aν = [axν , a
y
ν , a

z
ν ] is a constant shift vector that points from the origin of the global

r coordinate system to the origin of the local r′ν system. The corresponding linear coordinate transformation is then
given by r′ν = r− aν , while the volume vν of the ν-th particle is obtained via integration of the corresponding shape
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FIG. 4. Sketch illustrating the relationship between the global unprimed (r) laboratory coordinate system and the local primed
(r′ν) system of particle ν with magnetization Mν(r

′
ν) and shape function Sν(r

′
ν). aν is a constant shift vector that points from

the origin of the global r coordinate system to the origin of the local r′ν system. For simplicity, the z coordinate specifying the
third space dimension has been ignored.

function:

vν =

∫
R3

Sν(r
′
ν)d

3r′ν . (33)

To account for an inhomogeneous magnetic microstructure, we describe the Cartesian magnetization vector field
components Mµ

ν (with µ ∈ {x, y, z}) for the ν-th particle as the product of its shape function and a power series:

Mµ
ν (r

′
ν) = Sν(r

′
ν)

∞∑
k,m,n=0

Mµ
ν,(k,m,n)x

′k
ν y

′m
ν z′nν , (34)

where Mµ
ν,(k,m,n) are arbitrary constant expansion coefficients, which may depend on temperature, applied magnetic

field, and the type of material. The global Cartesian magnetization vector field components Mµ then follow as the
sum over the individual magnetization components Mµ

ν shifted by aν :

Mµ(r) =

K∑
ν=1

Mµ
ν (r− aν) (35)

=

K∑
ν=1

Sν(r− aν)

∞∑
k,m,n=0

Mµ
ν,(k,m,n)(x− axν)

k(y − ayν)
m(z − azν)

n

 ,
K being the number of particles in the assembly. For the further derivations, we prefer the Einstein and multi-index
notation. Using these notation concepts, Eq. (35) reads:

Mµ(r) = Sν(r− aν)M
µ
ν,α(r− aν)

α, (36)

where α = (k,m, n) represents a multi-index. The zero-order case of α = (0, 0, 0) corresponds to the situation of an
ensemble of uniformly magnetized nanoparticles. Higher-order terms in this series take into account the local spatial
nonuniformities in M.

For the computation of the magnetic SANS cross section, the next step is to perform the spatial Fourier transform

M̃µ(q) =
1

(2π)3/2

∫
R3

Mµ(r) exp(−iq · r)d3r. (37)
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Instead of direct integration, we can use the shift and derivation theorem of Fourier theory, such that the Fourier
transform of Eq. (36) can be expressed as

M̃µ(q) = i|α|Mµ
ν,α exp(−iq · aν)∂αS̃ν(q), (38)

where i is the imaginary number (i2 = −1).
In the sequel, the derivative ∂α, with α = (k,m, n), will denote the |α|-th order mixed partial derivative

∂α ≡ ∂k

∂qkx

∂m

∂qmy

∂n

∂qnz
, (39)

with |α| = k+m+ n being the sum of components of the multi-index α = (k,m, n). Likewise, the compact sum
∑

α

should be understood as the triple sum
∑

k

∑
m

∑
n. S̃ν(q) is the Fourier transform of the indicator function defined

by

S̃ν(q) =
1

(2π)3/2

∫
R3

Sν(r) exp(−iq · r)d3r. (40)

Next, introducing the following Fourier cross-correlation functions Γ̃ικ : R3 → C with ι, κ ∈ {x, y, z} (“∗” stands for
the complex conjugate),

Γ̃ικ(q) =
[
M̃ ι(q)

] [
M̃κ(q)

]∗
(41)

= i|α|−|β|M ι
ν,αM

κ
µ,β exp(−iq · [aν − aµ])∂

αS̃ν(q)∂
βS̃∗

µ(q),

we rewrite the spin-flip SANS cross section for the perpendicular scattering geometry [see Fig. 1 and Eq. (4)] as
follows:

dΣsf

dΩ
(q) = K

(
Γ̃xx + Γ̃yy cos4 θ + Γ̃zz sin2 θ cos2 θ − [Γ̃yz + Γ̃zy] sin θ cos3 θ

)
, (42)

with q = q[0, sin θ, cos θ]. We emphasize that the Γ̃ικ are functions of q and θ. In the following discussion, we focus
on the first-order approximation and we neglect interparticle interaction effects.

B. First-order approximation for a dilute ensemble of spherical nanoparticles

For a dilute (aν = aµ) and monodisperse (S̃ν = S̃µ = S̃) ensemble of spherical nanoparticles (with radius R), the
Fourier cross-correlation functions simplify to [6]:

Γ̃ικ(q) = i|α|−|β|M ι
µ,αM

κ
µ,β∂

αS̃(q)∂βS̃(q), (43)

where q =
√
q2x + q2y + q2z , and

S̃(q) =
3Vs

(2π)3/2
j1(qR)

qR
with Vs =

4πR3

3
. (44)

j1(u) = sinu/u2 − cosu/u is the first-order spherical Bessel function. In this special case of spherical nanoparticles
(where S̃ = S̃∗), the Fourier transform of the indicator function becomes real-valued, such that it is obvious that only
terms with |α| − |β| = 2u (with u ∈ Z) contribute to Eq. (43) [13]. In the study of Adams et. al. [14], the zero-order
case of Eq. (43), which reflects a dilute and monodisperse ensemble of uniformly magnetized spherical nanoparticles,
was studied in the context of the Stoner-Wohlfarth model. In this situation, the cross-correlation matrix can be
written as:

Γ̃ικ(q) = Γικ
0 [S̃(q)]2 with Γικ

0 =M ι
ν,(0,0,0)M

κ
ν,(0,0,0). (45)

The real-space cross-correlation matrix Γικ
0 is a function of the applied magnetic field, such that the two-dimensional

magnetic SANS cross section exhibits different types of angular anisotropies, even for randomly-averaged ensembles
at remanence or at the coercive field [14].
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Now, taking into account spin inhomogeneities up to the first polynomial order in the expansion of the magnetization
[Eq. (36)], Eq. (43) becomes:

Γ̃ικ(q) = Γικ
0 S̃

2 + Γικ
1,lm

[
∂S̃

∂ql

][
∂S̃

∂qm

]
, (46)

where we have defined the combinations of polynomial magnetization coefficients as:

Γικ
0 =M ι

ν,𭟋𭟋𭟋0
Mκ

ν,𭟋𭟋𭟋0
, (47)

Γικ
1,ℓm =M ι

ν,𭟋𭟋𭟋ℓ
Mκ

ν,𭟋𭟋𭟋m
, (48)

and we use the following 𭟋𭟋𭟋i symbol for booking the multi-indices of the magnetization coefficients:

𭟋𭟋𭟋i =


(0, 0, 0) , i = 0

(1, 0, 0) , i = x

(0, 1, 0) , i = y

(0, 0, 1) , i = z

. (49)

We note that the new Γ and C coefficients include the sum over the ensemble of nanoparticles. This is seen from the
fact that the index ν occurs only on the right-hand-side of Eqs. (47) and (48), but not on the left-hand-side. Since
(for a spherical particle) the Fourier transform of the indicator function S̃ depends only q =

√
q2x + q2y + q2z , we can

express the partial derivatives of S̃ in Eq. (46) (using the chain rule) up to the first-order as:

S̃(q) =
3Vs

(2π)3/2
j1(qR)

qR
,

∂S̃

∂qα
= q̂αS̃

′ (50)

where q̂l = ql/q (with l = x, y, z), δαβ is the Kronecker delta symbol, and the prime denotes the derivative with
respect to the radial coordinate, i.e., S̃′ = dS̃/dq and S̃′′ = d2S̃/dq2. Using the results from Eq. (50), we can rewrite
Eq. (46) as follows:

Γ̃ικ(q) = Γικ
0 S̃

2 + Γικ
1,ℓmq̂

ℓq̂mS̃′2. (51)

In the above formulation, we see that the angular (q̂α) dependence and the radial (q) dependence of the cross-
correlation functions are separated in the sense of a multiplication. This is an important property that facilitates the
further calculations, especially the azimuthal averaging of the magnetic SANS cross section (see below). Furthermore,
inspection of Eq. (50) shows that the shape function S̃ and its ordinary derivatives with respect to the radial coordinate
q also depend on the radius R of the particle. Therefore, it is convenient to define the dimensionless function f(u = qR)

such that the shape function S̃ and its derivatives can be written as follows:

f(u) =
j1(u)

u
=

sinu− u cosu

u3
, S̃(q) =

3Vs
(2π)3/2

f(qR), (52)

f ′(u) =
(u2 − 3) sinu+ 3u cosu

u4
, S̃′(q) =

3VsR

(2π)3/2
f ′(qR). (53)

In order to write the cross-correlation matrix [Eq. (51)] in compact form, we introduce the following radial functions
gk and angular functions Gικ

k :

g0(u) = (f(u))2, Gικ
0 (q̂) = hΓικ

0 , (54)

g1(u) = (f ′(u))2, Gικ
1 (q̂) = hR2Γικ

1,ℓmq̂
ℓq̂m, (55)

The functions g0(u) and g1(u) are shown in Fig. 5. For completeness we provide the limit of the functions gi(u) for
u→ 0:

lim
u→0

g0(u) =
1

9
lim
u→0

g1(u) = 0. (56)

The azimuthally-averaged spin-flip SANS cross section Isf(q) for the perpendicular scattering geometry is then ob-
tained by a projection onto the two-dimensional detector plane, i.e., setting q̂ = [0, sin θ, cos θ] in Eq. (51). Substituting
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FIG. 5. The functions g0(u), g1(u), and their weighted sum. The functions are normalized to their maximum values.

Eq. (51) for the Γ̃ικ(q) into Eq. (72) and carrying out an azimuthal average [(2π)−1
∫ 2π

0
(...)dθ], we obtain [Eq. (1) in

the main text]

Isf(q) = I0sf

[
sin(qR)− qR cos(qR)

q3R3

]2
+ I1sf

[
(q2R2 − 3) sin(qR) + 3qR cos(qR)

q4R4

]2
, (57)

where the Iksf are constant prefactors

Iksf =
1

2π

8π3b2H
V

∫ 2π

0

(
Gxx

k +Gyy
k cos4 θ +Gzz

k sin2 θ cos2 θ − (Gyz
k +Gzy

k ) sin θ cos3 θ
)
dθ. (58)

The first term in Eq. (57) corresponds to the form factor of a uniformly magnetized sphere, and the second term is
the first-order extension. The zero- and first-order coefficients I0sf and I1sf , as functions of the correlation coefficients
Γ, are given by

I0sf =
9V 2

s b
2
H

8V
(8Γxx

0 + 3Γyy
0 + Γzz

0 ) , (59)

I1sf =
9V 2

s R
2b2H

16V

(
8Γxx

1,yy + 8Γxx
1,zz + Γyy

1,yy + 5Γyy
1,zz + Γzz

1,yy + Γzz
1,zz − 2Γyz

1,yz − 2Γyz
1,zy

)
. (60)

In the perfectly saturated state, the higher-order coefficients in Eq. (57) vanish and the remaining zeroth-order term
is given by:

Isf(q;B0 → ∞) = I0,satsf g0(qR) = I0,satsf

[
j(qR)

qR

]2
. (61)

The corresponding spin-flip pair-distance distribution function psf(r) is then obtained from the spherical Hankel
transform of Isf(q) [Eq. (57)] as:

psf(r) = r2
∫ ∞

0

Isf(q)j0(qr)q
2dq (62)

= I0sf
πr2

6R3

[
1− 3r

4R
+

r3

16R3

]
+ I1sf

πr2

10R3

[
1− 5r

4R
+

5r3

16R3
− r5

32R5

]
.

Here, the first term corresponds to the well-known pair-distance distribution function of a uniformly magnetized
spherical nanoparticle, whereas the second term represents the first-order extension, with the ability to describe
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vortex-like spin textures. For completeness, we remind the reader that the general boundary conditions for the
pair-distance distribution function Eq. (62) in the case of objects of finite size are given by:

psf(0) = 0, psf(2R) = 0, (63)
dpsf
dr

∣∣∣∣
r=0

= 0,
dpsf
dr

∣∣∣∣
r=2R

= 0. (64)

Figure 1 in the main paper displays the “phase diagram” for Isf(q) and psf(r). Plotted are Eqs. (57) and (62) as
functions of the ratio I1sf/I

0
sf . Already for I1sf/I

0
sf > 1, we find that psf(r) exhibits negative values above a certain

distance r. The presence of negative values in the pair-distance distribution function (as well as in the correlation
function) refers to antiparallel spin correlations. Therefore, such negative values are a strong indication for the
presence of vortex-type spin structures. For even larger values of I1sf/I

0
sf , the distance distribution function reveals

a damped oscillatory behavior with the zero crossing shifting to smaller r. This observation is accompanied by the
appearance of a maximum in Isf(q) at a certain momentum transfer q that is different from q = 0. The transition
point above which Isf(q) shows a reduced behavior at q = 0 is given by a coefficient ratio I1sf/I

0
sf > 5.

We emphasize that in this formulation of the neutron-scattering observables it is only assumed that the magnetiza-
tion vector field is of linear polynomial order. In the following, we derive analytical results for the specific case that
this linear polynomial takes on the form of a vortex.

IV. LINEAR THEORY FOR VORTEX SPIN STRUCTURES

For the particular case of a linear vortex profile, analytical expressions for dΣsf/dΩ and chiral function dΣχ/dΩ can
be derived. For this, we assume that the magnetization vector field (for r < R) can be written as:

M′(r′) = m0e
′
z +m1v(r

′), (65)

where e′z = [0, 0, 1] is the unit vector in z′ direction, v(r′) = [−y′, x′, 0] is the linear vortex field, and r′ = [x′, y′, z′]
is the position vector with reference to the local vortex frame. A positive value for m1 indicates a counterclockwise
(CCW) or right-handed sense of rotation, while a negative m1 corresponds to a clockwise (CW) or left-handed sense
of rotation. We note that for a micromagnetic Hamiltonian that contains the isotropic exchange interaction, magnetic
anisotropy, and the Zeeman and magnetodipolar interaction there exists no preference for CCW or CW vortex rotation
senses in the particles. CCW and CW vortices appear with equal probability so that the chiral function averages to
zero (see below). By including the Dzyaloshinskii-Moriya interaction (DMI), which breaks space-inversion symmetry,
chirality selection takes place and leads to a nonzero chiral function [15]. Applying the Fourier differentiation theorem,
we obtain the following expression for the Fourier transform of the above local magnetization vector field:

M̃′(q′) = [−im1∂qy S̃(q
′), im1∂q′x S̃(q

′), m0S̃(q)], (66)

where S̃ denotes the spherical form-factor function

S̃(q) =
3Vs

(2π)3/2
sin(qR)− qR cos(qR)

q3R3
. (67)

Using the chain rule we find:

M̃′(q′) = [−im1q̂
′
yS

′(q), im1q̂
′
xS

′(q′), m0S(q
′)] (68)

with

S̃′(q) =
dS̃

dq
=

3Vs
(2π)3/2

(q2R2 − 3) sin(qR) + 3qR cos(qR)

q4R4
, (69)

and q̂ν = qν/q denotes the normalized Fourier space coordinates. We assume a dilute assembly of spherical nanopar-
ticles with randomly-distributed orientations of the magnetocrystalline anisotropy. In this case, the magnetization
vector field in the local particle frame [Eq. (65)] needs to be transformed into the global laboratory frame of reference
by a zy rotation matrix R(α, β) = Rz(β) · Ry(α), where α is the polar angle and β the azimuth angle. Such a
rotation transformation is invariant when going from real space to Fourier space, which is why the transformation of
the magnetization in Fourier space is transformed as:

M̃(q;α, β) = R(α, β) · M̃′ (RT (α, β) · q
)
. (70)
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Using the following definition of the correlation matrix of the Fourier magnetization vector field,

Γ̃ικ(q) =
[
M̃ ι(q)

] [
M̃κ(q)

]∗
, (71)

and by projection into the detector plane q = [0, q sin θ, q cos θ], the spin-flip SANS cross section dΣsf

dΩ (q, θ;α, β) and
the chiral function dΣχ

dΩ (q, θ;α, β) corresponding to a single nanoparticle with vortex orientation (α, β) are written as
(see also [8]):

dΣsf

dΩ
(q, θ;α, β) = K

[
Γ̃xx + Γ̃yy cos4 θ + Γ̃zz sin2 θ cos2 θ − (Γ̃yz + Γ̃zy) sin θ cos3 θ

]
, (72)

dΣχ

dΩ
(q, θ;α, β) = K

[
(Γ̃xy − Γ̃yx) cos2 θ + (Γ̃xz − Γ̃zx) sin θ cos θ

]
. (73)

In the MNPSE method, we define the ensemble-averaged (dilute) SANS cross sections as:〈
dΣsf,χ

dΩ

〉
=

1

2

∫ 4π

0

[
dΣCCW

sf,χ

dΩ
+
dΣCW

sf,χ

dΩ

]
ψ(α, β)dΥ (74)

where dΥ = sinαdαdβ is the solid-angle differential, and dΣCCW
sf,χ

dΩ (q;α, β) and dΣCW
sf,χ

dΩ (q;α, β) are the SANS cross sections
referring to two nanoparticles with the same orientation (α, β), but opposite senses of vortex rotation (mCCW

1 =
−mCW

1 ). The function ψ(α, β) is a field-dependent probability distribution modelling the orientation of both the CCW
and CW vortex rotation axes (no distinction between the different polarities). For simplicity, we assume a uniform
distribution ψu on the spherical surface, which is limited by a field-dependent conical opening angle 0◦ ≤ αc ≤ 90◦.
The azimuthally-symmetric distribution function is then given by:

ψu(α, β) =
Θ(1− α/αc)

2π(1− cosαc)
, (75)

where Θ(ξ) is the Heaviside function. Finally, the resulting spin-flip SANS cross section and chiral function for a
dilute ensemble of spherical nanoparticles with vortex type spin structures reads (H0 ⊥ k0):〈

dΣsf

dΩ

〉
(q, θ) =

W

8
[m0f(qR)]

2 ×
[
12− (cos2 αc + cosαc)(3 cos

2(2θ) + 2 cos(2θ) + 3) + 4 cos(2θ)
]

(76)

+
W

2
[m1Rf

′(qR)]2 ×
[
3− (2 cos2 αc + 2 cosαc − 1) cos(2θ)

]
,

〈
dΣCCW,CW

χ

dΩ

〉
(q, θ) = ±W [m0|m1|Rf(qR)f ′(qR) cos θ]×

[
4 + cos2 αc + cosαc − 3(cos2 αc + cosαc) cos

2 θ
]
, (77)

where W = 3V 2
s b

2
H/V . The “+” sign in Eq. (77) stands for CCW and the “−” sign for CW vortex rotations.

Equations (76) and (77) are displayed in Fig. 2 in the main paper. When no chirality selection takes place, then it
follows that: 〈

dΣχ

dΩ

〉
=

1

2

[〈
dΣCCW

χ

dΩ

〉
+

〈
dΣCW

χ

dΩ

〉]
= 0. (78)

The azimuthally-averaged spin-flip SANS cross section then equals:

⟨Isf⟩(q) =
1

2π

∫ 2π

0

〈
dΣsf

dΩ

〉
(q, θ)dθ (79)

=
3W

16

(
[m0f(qR)]

2(8− 3 cos2 αc − 3 cosαc) + 8[m1Rf
′(qR)]2

)
.

Comparing this expression to Eq. (57) we find:

I0sf =
3W

16
m2

0(8− 3 cos2 αc − 3 cosαc), (80)

I1sf =
3W

16
8m2

1R
2, (81)

ι =
I1sf
I0sf

=
8m2

1R
2

m2
0(8− 3 cos2 αc − 3 cosαc)

. (82)
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FIG. 6. Same as Fig. 1 in the main paper, but for a uniaxial particle anisotropy (1600 random orientations). “Phase diagram” for
the azimuthally-averaged spin flip SANS cross section Isf(q) [Eq. (57)] and for the spin-flip pair-distance distribution function
psf(r) [Eq. (62)] within the limits of the first-order magnetization model. The left panel shows the analytical results, while the
right panel features the corresponding results of the micromagnetic simulations. The ratio ι of the zero-order coefficient I0sf
and the first-order coefficient I1sf determines the appearance of vortex-type spin structures. Field (B0 = µ0H0) variations in
the simulations correspond to ι variations in the analytical part (zero field: ι → ∞; saturation: ι → 0). (a) Color-coded plot
of the normalized Isf(q) as a function of ι = I1sf/I

0
sf and qR. The black solid line in (a) describes the shift of the maximum in

Isf(q) towards qmax
∼= 2.50/R [white dashed line, compare (e)]. (b) Normalized psf(r) as a function of ι and r/R. The black

solid line in (b) describes the shift of the zero in psf(r) towards rz ∼= 1.07R [white dashed line, compare (f)]. (c) Normalized
Isf(qR) and (d) normalized psf(r/R) for different ι [see inset in (d)]; the inset in (c) displays Isf(q)/Imax

sf for 4 < qR < 10. The
colored horizontal lines in (a) and (b) correspond, respectively, to the curves in (c) and (d).

V. UNIAXIAL VERSUS CUBIC RANDOM ANISOTROPY

The micromagnetic simulation results that are reported in the main paper were carried out using the materials
parameters of iron, which possesses a cubic magnetocrystalline anisotropy. Figures 6−9 show the results when a
random uniaxial anisotropy is used in the simulations, instead of a random cubic anisotropy. More specifically, the
following expression for the magnetic anisotropy energy has been used [replacing Eq. (14)]:

Eani = −Ku1

∫
(eA ·m)2 dV, (83)

where Ku1 = +4.7× 104 J/m3 denotes the first-order uniaxial anisotropy constant, and eA is a unit vector specifying
the local random easy-axis direction of a particle. Comparing Figs. 6 and 7 with Figs. 1 and 2 in the main paper, and
likewise Figs. 2 and 3 with Figs. 8 and 9, see that the behavior is qualitatively and quantitatively very similar.
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