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We report on the stability of the magnetic dipole string (DS), a three-dimensional magnetic texture formed
by two coupled Bloch points with opposite topological charges, separated by an equilibrium distance. Previous
studies demonstrated the stability of such configurations through geometric confinement or coupling with local
perturbations in the magnetization field, such as skyrmion strings or dislocations in helical modulations. Here, we
show that, in uniaxial chiral magnets, an isolated DS remains stable in an unperturbed vacuum, thus representing
a true three-dimensional soliton. The phase diagram illustrates the stability of the DS embedded in the conical
or helical phases across a broad range of material parameters and external magnetic fields. Using the geodesic
nudged elastic band method applied to a regularized micromagnetic model, we demonstrate that isolated DSs
are protected from collapse by an energy barrier. Stochastic spin-lattice simulations demonstrate that DSs can
spontaneously nucleate during in-field annealing. This work aims to stimulate the experimental observation of

DSs and further exploration of uniaxial chiral magnets.
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I. INTRODUCTION

Magnetic skyrmions [1] are two-dimensional (2D) topo-
logical solitons that can be stabilized in various magnetic
systems [2—4]. Their unique particlelike properties have gar-
nered significant interest for potential applications (see, e.g.,
Refs. [5-7] and references therein).

In bulk three-dimensional (3D) samples, magnetic
skyrmions can form intricate filamentary textures of nontrivial
topology. For example, 3D skyrmion strings can braid [8],
hybridize [9], cluster into bundles [10], or even host hopfion
rings [11]. Typically, these strings penetrate the entire
thickness of a sample. However, there are exceptions, such
as configurations in which a skyrmion string emerges from
the surface and terminates within the sample volume by
a singularity, a so-called Bloch point (BP) [12,13]. These
statically stable configurations are referred to as chiral
bobbers [14-16].

The magnetic textures studied in this work can be viewed
as fragments of skyrmion strings that begin and terminate
within the crystal volume, encompassing two BPs, as illus-
trated in Fig. 1(a). In the literature, these configurations are
referred to as magnetic dipole strings (DSs) [17], torons [18],
cocoons [19], globules [20], or monopole-antimonopole pairs
[21,22].

Previous studies have shown that the stabilization of DSs
can be achieved through geometric confinement [23], artificial
surface anisotropy [24,25], or coupling to auxiliary textures,
such as skyrmion strings, conical edge dislocations [17], or
conical screw dislocations [26]. However, DS configurations
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stabilized by these methods are constrained by their envi-
ronments and do not represent true 3D magnetic solitons
capable of free motion in all spatial directions. In this work,
we introduce a class of magnetic crystals where DSs emerge
as freely mobile, true 3D solitons stabilized purely by local
interactions. We show that such DSs can be easily nucleated,
detected, and moved efficiently by external stimuli.

The paper is organized as follows. In Sec. II we introduce
the micromagnetic Hamiltonian. Section IIT A features the
results on the phase diagram of DSs; Sec. III B addresses
the stability range of DSs; Sec. IIIC is concerned with the
nucleation properties; Sec. III D discusses the results for the
energy barriers obtained with the regularized geodesic nudged
elastic band method (RGNEB); Sec. III E discusses possibility
of nucleation of an isolated DS; and Sec. III F addresses the
current-induced motion of DSs. Finally, Sec. IV summarizes
the main findings of this study. The Supplemental Material
[27] provides further details on the derivation of the cone-to-
ferromagnetic transition, MUMAX3 scripts for the DS ansatz in
cone and helix phases, details of the RGNEB method, and the
velocity projection optimization algorithm.

II. MODEL

We consider a chiral ferromagnet with bulk-type
Dzyaloshinskii-Moriya interaction [28,29] (DMI) and
hard-axis (easy-plane) anisotropy:

Em) = /[A(al‘n)2 +Dn-Vxn+Um]dV, (1)
where A and D are the strengths of exchange and DMI, re-
spectively; summation over subscript i € {x, y, z} is assumed.

The potential term U(n) = —%MSBd ‘N — MyBexin; + Kuni

©2025 American Physical Society


https://orcid.org/0000-0002-3119-320X
https://orcid.org/0000-0002-7423-0840
https://orcid.org/0009-0003-7501-9195
https://orcid.org/0000-0002-2786-295X
https://orcid.org/0000-0002-1473-3913
https://ror.org/036x5ad56
https://ror.org/02nv7yv05
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.111.174410&domain=pdf&date_stamp=2025-05-06
https://doi.org/10.1103/PhysRevB.111.174410

VLADYSLAV M. KUCHKIN et al.

PHYSICAL REVIEW B 111, 174410 (2025)

(a)
Y
./
4
3
%
X
%
b
7
4
L3
W
N
(b)
1 . .
i Z DS in cone
208 (0.39, 0.65) S DS in helix
06
o
o]
=
L
< 0.4
C
(o))
s
0.2

0 0.2 0.4 0.6 0.8 1 1.2
Anisotropy, K,/ MBp

FIG. 1. (a) Stable DS solution in the cone phase obtained by
direct energy minimization of Eq. (1) at & = Bey/Bp = 0.55 and
u = Ky/(MBp) = 0.25, visualized via the isosurface (n, = 0). The
inset highlights two Bloch points (BPs) with opposite topological
charges [33]. The standard color code [34,35] is used throughout:
white and black pixels indicate magnetic moments aligned parallel
and antiparallel to the z axis, respectively, while red, green, and blue
represent the azimuthal angle relative to the x axis. (b) State diagram
for chiral magnets under an external field applied orthogonally to
the hard axis of the magnetocrystalline anisotropy. The red region
corresponds to the skyrmion lattice (SL), and the dashed green line
marks the conditions where the metastable cone and helix phases
have identical energies. The dashed blue line, instead, marks the
critical field at which the cone saturates to a FM state. The two
semitransparent regions indicate the stability domains of DSs within
the cone and helix phases.

accounts for the demagnetizing field By, the externally applied
magnetic field Bexe > 0 along the z axis, and an easy-plane
anisotropy X, > 0 with the hard axis along the x axis. A
comprehensive analysis of the role of the anisotropy is very
cumbersome and beyond the scope of the present paper. This
aspect will be considered elsewhere.

For further convenience, we introduce the characteris-
tic length scale Lp = 47 A/D and the magnetic field Bp =
D?/(2.AM;) that correspond to the equilibrium period of the
chiral modulations at U(n) = 0 and to the saturation mag-
netic field at B4 = 0 and K, = 0, respectively. Using these
characteristic parameters, we can employ the dimensionless
field i = Bex/Bp and anisotropy u = K, /(MBp). In the fol-
lowing discussion, we ignore the presence of demagnetizing
fields that usually introduce quantitative but not qualitative

changes to most of the magnetic spin textures studied previ-
ously [8,14,30], especially for the bulk.

III. RESULTS

A. Phase diagram

Figure 1(b) presents the diagram of magnetic states for the
model (1) in a scenario [31], where the external field is applied
perpendicular to the hard axis (see bottom right inset). The
ground state of the system is the spin spiral. It is common to
distinguish spin spirals based on the orientation of their wave
vector q relative to the applied magnetic field. In the case of
q || Bext, the spin spiral is referred to as the cone, while for
q L By, it is typically referred to as the helix. The cone and
helix can serve as a vacuum for ordinary and hybrid skyrmion
strings [8,9], heliknotons [30,32], and 3D chiral droplets [9].
In Fig. 1(b), the regions of stable DSs submerged in the cone
or helix phases are depicted by the gray semitransparent areas
marked by circles (o) and crosses (x), respectively. Error bars
for all points in the diagram do not exceed 10~3 for both &
and u values, and are therefore smaller than the size of the
symbols.

Let us briefly discuss the key aspects of the diagram shown
in Fig. 1(b). In the isotropic case (u = 0), there are only
two phases: the cone phase for 7 < 1 and the saturated or
ferromagnetic (FM) state for 4 > 1. Similarly to the case of an
easy-axis anisotropy [36], for hard-axis bulk chiral magnets,
the phase diagram contains four phases [31]: cone, helix,
skyrmion lattice (SL), and FM [Fig. 1(b)]. The equilibrium
period of the cone phase in the case u > 0 depends on the
magnetic field & and cannot be found analytically. On the
other hand, by analyzing the Euler-Lagrange equations, one
can derive the critical field A{" at which the system saturates
to the FM state:

h =1 - u/2)?,  uel0,2]. 2)

For details, we refer the reader to the Supplemental Material
1[27]. In the diagram Fig. 1(b), the function A{"(u) is marked
by the dashed blue line.

The period of the helix is a function of A, but in our
geometry, when B is orthogonal to the hard anisotropy
axis, it does not depend on u. Thus, the transition to the FM
state can be found by analyzing a single 360°-domain wall
state that corresponds to A" = 72/16. Comparing the latter
with (2), we find a critical anisotropy value of u" =1 — /2,
corresponding to the triple point, cone-helix-FM (see square
symbol in the diagram).

To investigate phase transitions between the cone, helix,
and SL phases, we numerically minimized the Hamiltonian
(1) using optimized parameters for each phase and compared
their respective energies. These calculations were performed
with the conjugate gradient method, enabling high-precision
estimates of phase transitions and stability of the DS. Specif-
ically, we identified three triple points corresponding to
the cone-helix-SL, cone-FM-SL, and helix-FM-SL transi-
tions, which in terms of (u, k) are located at (0.044, 0.29),
(0.39,0.65), and (0.5, w2 /16), respectively.
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FIG. 2. Magnetic dipole string (DS) nucleation via (a), (b) in-field annealing and (c)—(f) helix breaking. (a) Random spin distribution
resembling a paramagnetic state. (b) Sequence of states obtained using LLG simulations at 2 = 0.55 and u = (.25, starting from (a). The
simulated box size is 3Lp x 3Lp x 3Lp, discretized into 1283 cuboids. (c) Helix initial state at & = 0.57 and u = 0.42. (d) Helix at a
temperature of 7~ 0.97¢. (e) State obtained after cooling from (d), showing DSs embedded in the helix. (f) Same as (e) but after the
despiralization procedure, which unwinds the helix into a ferromagnetic state. The simulated domain in (¢)—(f) is 6Lp x 6Lp x 6Lp, discretized
into 256 lattice sites. The red-blue color scale in (¢)—(f) represents the n, component of the magnetization. Periodic boundary conditions are

applied in all directions.

B. DS stability range

For the study of the stability region of the DS, we con-
structed a reliable ansatz of its profile that can be used as an
initial guess in numerical simulations. Using the parametriza-
tion n = (sin © cos P, sin O sin P, cos O), the ansatz for the
DS can be written in bispherical coordinates. These coordi-
nates are characterized by two poles at (0, 0, =a/2), which
coincide with the BP positions:

rr—a? y m
® = arctan ——1—5,

\/ (r2+a2)* —4a2z? *

where r=,/x2+y%+z2 denotes the spherical radius and a is
the distance between the poles (between the BPs).

Since Eq. (3) givesn = (0, 0, 1) at r — o0, it is necessary
to rotate both the vector field n and the spatial coordinates r
to obtain the cone phase vacuum, as described in Ref. [37].
In the case where the DS is embedded in the helix, we place
the BPs at (f+a/2, 0, 0) and apply the spiralization procedure
[30], which transforms the FM state into a helix with q || e,.
For both cases, i.e., DS in the helix and DS in the cone, we
provide MUMAX3 scripts in Supplemental Material II, III [27],
where the ansatz (3) is implemented.

Starting the energy minimization with the above ansatz,
one can obtain a statically stable solution for a DS when Bey
and /C, are in the ranges depicted as semitransparent gray
areas in Fig. 1(b). Varying the values of B¢y and K, we
identify the boundaries of the DS stability regions. Note that
the DS within the cone and helix phases in Fig. 1(b) represent
metastable solutions. This implies that while an isolated DS

® = arccos

3

is a statically stable configuration in these regions, the total
energy of the system with a DS is higher than that of the
pure cone or helix state. Interestingly, even in the case of
the isotropic chiral magnet (1 = 0), the DS can be stabilized
inside the helix phase in a finite range of the applied field,
h € [0.26, 0.33]. In this scenario, the DSs are stabilized in a
helix, while the ground state of the system is the cone phase.
Nevertheless, this indicates that DSs can be experimentally
observed even in isotropic chiral magnets, e.g., FeGe [37-40],
MnSi [41,42], Fe;_,Co,Si [43,44], and other B20-type crys-
tals [45]. Experimentally, DSs can be detected using Lorentz
transmission electron microscopy (TEM) in plates or films
thin enough to be transparent to electrons. For thicker samples
and bulk systems, neutron scattering techniques, sensitive to
local magnetization inhomogeneities and defects, can provide
indirect evidence for the presence of DSs. In both cases, how-
ever, the unambiguous identification of the observed magnetic
states requires support from micromagnetic simulations.

C. Nucleation of DSs

We consider two approaches to demonstrate the nucleation
ability of DSs in the cone and helix phases (Fig. 2). The first
approach illustrates DS nucleation via annealing. We begin
with a random spin distribution that resembles the param-
agnetic phase [Fig. 2(a)]. The system is then cooled using
standard Landau-Lifshitz-Gilbert (LLG) simulations, result-
ing in the configurations shown in Fig. 2(b). This simulation
was performed with MUMAX3 [46] using a cubic sample and
periodic boundary conditions. After long-term relaxation, the
system converges to a mixed state consisting of skyrmion
strings and several DSs of different sizes. Similar configu-
rations are consistently observed when the system is cooled
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FIG. 3. (a) Minimum energy path (MEP) for dipole string (DS) collapse, shown for different values of the parameter « in the regularized
micromagnetic model. The path connects the stable DS state (leftmost point) to the cone phase state (rightmost point) via the DS’s shrinking.
(b) Zoomed-in fragment of the MEP from (a), with selected DS configurations visualized at various path images. Isosurfaces correspond to
n, = 0, while the white surfaces represent |n| = 0.95. The MEP calculations were performed at 4 = 0.55, u = 0.25 in a simulated domain of
size 3Lp x 3Lp x 3Lp, discretized with 21 nodes per Lp. The cubic domain in the insets has a side length of 1.5Lp.

from different initial random states. In these simulations, we
frequently observe stable DSs of various lengths correspond-
ing to different equilibrium distances between the BPs. Such
behavior of DSs coupled to skyrmion strings has been re-
ported previously [17]. It is important to note that from a
topological perspective, all these DSs are identical to the one
depicted in Fig. 1(a).

The second approach resembles the method used to nucle-
ate monoaxial skyrmions [47] in experiments [48]. Starting
from a helical state [Fig. 2(c)], we perform stochastic LLG
simulations using a spin-lattice model and the semi-implicit
method [49]. In these simulations, the temperature is set
to T = 1.2J/kg, where J = 2A represents the Heisenberg
exchange constant. This temperature is below the Curie
temperature of Tc = 1.345J/kg, as estimated in Ref. [17].
After some time, we observed the breaking of several spirals
[Fig. 2(d)]. The temperature is then turned off, and the system
is gradually cooled. The resulting final state consists of several
DSs embedded in the helix [Fig. 2(e)]. To enhance visualiza-
tion, we applied the despiralization procedure, as described in
Ref. [30] [Fig. 2(e)]. Similarly to the first approach, the final
state typically comprises skyrmion strings and multiple DSs
of varying lengths.

D. Regularized geodesic nudged elastic band method

For the further characterization of DSs, we estimated the
energy barriers that protect them from collapse. A repre-
sentative minimum energy path (MEP), calculated using the
geodesic nudged elastic band (GNEB) method [50,51], is
shown in Fig. 3. We found that within the standard micro-
magnetic model where magnetization vectors n are defined on
the Sz-sphere (i.e., ordinary three-dimensional unit vectors),
the GNEB method exhibits poor convergence for configura-
tions containing BPs. This issue arises due to the divergence
of the effective field in the vicinity of the BP. To address
this, we used a regularized micromagnetic model, where the

order parameter v is defined on the S3-sphere [52]. The
first three components of the four-dimensional vector v =
(v1, v2, v3, V) coincide with the magnetization unit vector n,
while the fourth component relates to the vector’s length:

2 2
Vi=1n,, WV=mn, V3y=n, v,=1—|n". (4

In this model, the exchange energy term in Eq. (1) is modified
as follows:

AD T @GmyP e A D @) + K], )

i=x,y,z I=X,y,2

while the DMI and potential energy term remain unchanged.
The phenomenological parameter « in Eq. (5) can be in-
terpreted as a BP localization parameter. In the limit « —
oo (v4 — 0), the system reduces to the standard micromag-
netic model. The regularized model inherently satisfies the
condition |n| < 1, ensuring qualitative consistency with the
predictions of the more general quantum-mechanical model
[52].

The key aspects of the regularized GNEB method remain
identical to those of the standard GNEB method. The entire
transition path is discretized into a series of transient states,
referred to as images, which interact with each other through
forces. The total force acting on each image consists of the
effective magnetic field force B, and the spring force f:

1 6H

Br=—1r5

=k — _ , 6
M. 3v7 fr=klpzs1,z — pzz-1)TZ, (6)

where Z € [1, ] is the image index with A being the to-
tal number of images, k is the spring force constant, p is
the reaction coordinate (the Euclidian distance between the
images), and 77 is the tangent vector. The optimal minimum
energy path (MEP) is obtained through iterative minimization
of the absolute value of the total force. Details of the RGNEB
implementation, including the force minimization algorithm,
are provided in the Supplemental Material IV, V [27].

174410-4



STABILITY AND NUCLEATION OF DIPOLE STRINGS ...

PHYSICAL REVIEW B 111, 174410 (2025)

(a)4 3
9
oni‘
< 38 46 54
N 2.17
o 2.16
5 2.1
2 52 56 60
w
24 28 32

) 0 10 20 30 40 50 60
Image index

(b) () o)

y

FIG. 4. (a) Minimum energy paths between (b) a skyrmion tube
and (d) a dipole string, computed using both the GNEB and RGNEB
methods. Calculations were performed on a cubic domain of size
(2.5Lp)%, discretized into a mesh of 64° cuboids. Periodic boundary
conditions were applied in the x and y directions. The external
magnetic field was set to 4 = 0.65, and the easy-plane anisotropy
parameter to u = 0.3. For the RGNEB method, the parameter x =
10~*M,Bp. (b)—(d) Snapshots of the spin texture corresponding to the
configurations marked by black crosses on the RGNEB-calculated
MEP shown in (a).

Figure 3(a) shows the MEP calculated for four different
values of k. As k increases and the model approaches the clas-
sical micromagnetic model, the energy at each point along the
MERP increases while the convergence of the RGNEB method
slows down significantly. For ¥ > 0.1, achieving reasonable
accuracy becomes problematic, as the RGNEB method fails
to converge due to the pinning of the BPs in the lattice.

The initial path guess was generated using the ansatz (3),
where the distance between the BPs, a, changes linearly along
the MEP. For all values of «, the MEP exhibits two saddle
points and one intermediate minimum, corresponding to a
more compact but slightly higher-energy DS. A zoomed-in
fragment of the MEP is shown in Fig. 3(b), along with system
snapshots for selected images where the DS is visualized
using two isosurfaces. The color-coded isosurface indicates
the shape and size of the DS; the second one highlights the
BP positions. The full set of snapshots is available in Supple-
mental Movie 1 [27].

E. DS nucleation from the skyrmion string

The approach discussed in Sec. III C enables massive nu-
cleation of DSs. To illustrate the possibility of nucleating an
individual DS, Fig. 4 shows a MEP between a stable skyrmion
and a DS, computed using both the GNEB and RGNEB meth-
ods. The existence of such a MEP indicates that, under certain
conditions, a transition between these states is feasible, and
an individual skyrmion can be converted into a DS. For the
GNEB calculations, we used our publicly available extension
for MUMAX3 [53]. It is important to note that, in both cases

of GNEB and RGNEB, the initial MEP is generated via linear
interpolation between the two end states.

At first glance, both methods yield comparable results.
However, in addition to differences in the energy barrier
heights, the MEP obtained with the RGNEB method reveals
an extra intermediate local minimum that is absent in the MEP
computed using the standard GNEB method. Furthermore, the
motion of BPs under the change in DS size exhibits pinning
effects, resulting in abrupt energy variations between adjacent
images along the MEP. Although such BP pinning may ap-
pear naturally in spin lattice models [57], in the continuum
framework, it constitutes an artifact arising from the finite-
difference scheme used to approximate derivatives in the
micromagnetic Hamiltonian. One may conclude that RGNEB
is preferable for studying transitions involving BPs. Supple-
mental Movies 2 and 3 [27] provide complete sets of spin
texture snapshots along the MEPs computed using RGNEB
and GNEB, respectively.

Given the finite energy barriers between the skyrmion
string and the DS, thermal fluctuations could, in principle,
induce such transitions. Similar thermally activated nucle-
ations have been observed for other spin textures [30,54,55].
However, to estimate the temperature range in which such
transitions could become experimentally accessible, a more
detailed analysis, for example, with transition rate theory [56],
is needed.

F. Current-induced motion of DS

The dynamics of DSs can be modeled with the LLG equa-
tion:

on Buir + ALY %)
— = —yn X Begr +an x — ,
ot Y ft ot

where y and « are the gyromagnetic ratio and Gilbert damp-
ing, respectively. The effective magnetic field is defined
as the variational derivative of the Hamiltonian (1), Beg =
—(M,)~'8€ /6n. The torque T is chosen to model the presence
of electric current with density j via the Zhang-Li mechanism
[58]:

T=-nxnxJ-V)n]—&énx({J-V)n, ®)

where & is the nonadiabaticity parameter and J =
usoj/2eyoM(1 + £%). By numerically solving Egs. (7)
and (8) in MUMAX3 [46] with a current density
j=1[-15x 10" x £(),0,0] A/m?, we induce the motion
of the DS in the xy plane (see Fig. 5). To suppress the
excitation of additional modes, we employed a smoothing
function, f(¢) € [0, 1], defined as follows [59]:

1 4+ exp(—2)

FOy=1- 1+ exp[Rwt — 2]’

w = 1 GHz. )
To obtain the velocity of a DS, we have first calculated
its position re = (¥, I'yc, ;¢ ), taking into account periodic
boundary conditions [60]:

Li 1 fNiksin(ani/L,-)dri

ric=— tan

27 [Nk cos 2mr;/L;)dr;

+ LiL;, (10)

vskip-3ptwhere the nonrepeating indices {i, j, k} € {x, y, z},
and ./\/jk = f (1 —n;)dr;dry. The integers I; represent the
number of times the DS has crossed the domain boundary in
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FIG. 5. (a) Temporal evolution of the x, y, and z components of the center of mass of a DS, calculated according to Eq. (10) and based on
the numerical solution of the LLG equation [Egs. (7) and (8)]. (b) Snapshots of the system illustrating the motion of a DS. The stable DS was
obtained for the same physical parameters as in Fig. 1(a), and the simulation domain was discretized into 64° cuboids.

the x, y, and z directions, respectively. Then, the DS velocity is
calculated as the time derivative of its position, v = r.. For the
chosen current density j, « = 0.05, and & = 0.25, we obtain
v =(26.9,2.16,0)m/s.

As we can see from the numerical simulations [Fig. 5(a)],
the DS moves with a certain deflection angle S =
arctan(vy/vy) > 0 in the xy plane. This can be easily under-
stood from the fact that the DS represents a fragment of a
skyrmion string and is characterized by a nonzero topological
charge in some of its z cross sections, which leads to a nonzero

(%2}
>
5}
o
‘=
[}
°
c
=}

overfocus

T Bee=100mT T

phase shift, ¢ (rad)

-5 0

skyrmion Hall angle. Snapshots of the system providing a
representative picture of the DS motion are given in Fig. 5(b),
and the whole dynamics simulation is available in the Supple-
mental Movie 4 [27].

The DS’s translational motion is accompanied by periodic
vibrations, which arise from frequent jumps of the BPs be-
tween adjacent nodes of the discrete mesh. Similar effects
have been previously observed in the current-induced motion
of chiral bobbers [61]. These vibrations appear to be a general
feature of magnetic textures hosting BPs and become more

R— | p—

—
6 0 6-6.5 0 6.5 -7 0

5-55 0 5.5-

~.

FIG. 6. (a) Schematic illustration of the TEM setup. The electron beam is oriented perpendicular to the FeGe plate, which has dimensions
of 500 nm x 500 nm x 120 nm. An external magnetic field is applied along the z axis, in the plane of the plate. The magnetization is shown
at the edges of the simulated box and is represented by the isosurface at m, = —0.3. The central dipole string is slightly elongated, with a
distance between the Bloch points of ~1.5Lp. (b) The top two rows display Lorentz TEM images in both overfocus and underfocus conditions
(defocus distance: 700 pm) for FeGe plates of varying thickness. The bottom row shows the corresponding electron holography images, which
visualize the phase shift of the electron wave. Supplemental Fig. S1 [27] presents similar TEM images for a more compact dipole string with

a distance between the Bloch points of ~1Lp and stabilized at 150 mT.
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pronounced as the mesh density increases. A detailed analysis
of the dynamics of solitons hosting BPs lies beyond the scope
of this work and will be presented elsewhere [62].

G. Observation of DS in TEM

To demonstrate that DSs can be experimentally detected,
we calculated the Lorentz TEM contrast and the electron
wave phase shift using a standard method [8]. These calcula-
tions were performed using the EXCALIBUR code [63], which
enables direct energy minimization and in situ computation
of Lorentz TEM and phase-shift images. Simulations were
carried out for a square-shaped plate with material parame-
ters corresponding to a B20-type FeGe crystal, including the
effects of demagnetizing fields. The TEM setup and the simu-
lated domain containing a stable DS are shown in Fig. 6(a),
while the resulting Lorentz TEM and electron holography
(phase-shift) images are presented in Fig. 6(b).

FeGe possesses negligibly weak magnetocrystalline
anisotropy [8]. However, in extended plates, demagnetizing
fields effectively induce an easy-plane anisotropy that
stabilizes the DS. The DS configuration remains stable under
an external magnetic field applied in the sample plane and
persists over a wide range of plate thicknesses. For the present
geometry, we have estimated the lower stability limit for DS
at a plate thickness of approximately Lp, which corresponds
to 70 nm in FeGe. For plates equal to or thinner than Lp, DSs
become unstable.

We computed Lorentz TEM images in both overfocus
and underfocus conditions, as well as phase-shift images,
for various plate thicknesses. As these results show, when
the thickness increases, detecting DSs may become difficult.
However, the characteristic contrast remains clearly visible
for plate thicknesses between 80 nm and 160 nm. In addition
to TEM, DSs can also be observed using x-ray magnetic
microscopy techniques [64].

IV. CONCLUSIONS

In this work, we introduced a model of a bulk chiral magnet
where a magnetic dipole string (DS) exists as a truly statically

stable soliton. We demonstrated that DSs can be stabilized
within the cone or helix phases, or in mixed states coexisting
with skyrmion strings. It is shown that uniaxial chiral magnets
are promising systems for the experimental observation of
DSs when the external magnetic field is applied perpendicular
to the hard axis. However, we also show that DSs can be
stabilized in isotropic chiral magnets in a certain range of ap-
plied magnetic fields. Furthermore, we argue that spontaneous
nucleation of DSs can be achieved through controlled anneal-
ing of the sample, making this phenomenon experimentally
accessible. We demonstrate that DSs can be directly observed
in TEM, even in materials lacking easy-plane anisotropy.
In particular, we show that DSs can be stabilized in B20-
type FeGe due to the effect of shape anisotropy. Moreover,
similar to other magnetic solitons, DSs can move under an ap-
plied electric current. Finally, we establish that a regularized
micromagnetic model provides an adequate framework for de-
scribing DSs and can be readily adapted for minimum energy
path calculation methods, facilitating further theoretical and
computational studies.
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I. CONE-FM TRANSITION

By performing the nondimensionalization in Hamiltonian (1) as described in the main text, one can obtain the
functional in the following form:

& Vn)?
(n) = / (Vn) +2mn -V x n+4n® (un2 — hn,) | dV. (1)
2A 2
To satisfy the constraint |n| = 1, we can employ parametrization with the spherical angles (0,®) as n =

(sin © cos @, sin © sin @, cos ©). In the case of the cone, the angles depend only on the z coordinate. The Euler-
Lagrange (EL) equations followed from §& = 0 have the form:

{(é ((I)/)Z — 279" — 4%y cos? <I>> sin20 — ©” + 47%hsin® = 0, 2

(4r%usin2® — ") sin®> © — O’ (¢’ — 2) sin 20 = 0.
For u = 0,h € [0,1], the analytic solution for the cone phase writes as n. = (sin © cos(27z + ¢y), sin O sin(27z +
¢0),cos O, ), where cos O, = h and ¢ may take arbitrary value. At u > 0, the analytic solution of (2) corresponding
to the cone phase is not known and can be found only numerically. However, the critical magnetic field corresponding

to the transition to the FM state can be found analytically. To obtain this solution, we parametrize magnetization
with stereographic projections, (y1,72), as:

n:( 2m 272 1—7%—72%)
14914+ 1477+ 1+3 +73

In these projections, the solution for the cone phase at u = 0 can be written as:

3)

c

; C)
Y1+ iyp = !9 tap 5 (4)

From this, we can deduce, at the transition to the FM state, h = h°", one has ©, — 0, or equivalently, v; — 0 and
~v2 — 0. Plugging (3) into (1), we derive the EL equations for (y1,72) and linearize them at y; < 1 and 7o < 1:

Ar* (h = 2u) y1 — 4y — ) =0,

4T3 h Ty 4 dmyy — 4 =0, (5)
which is equivalent to a single higher-order linear equation:
D 4872 (2 — b 4 u) 4l + 167 (A — 2u) 71 = 0. (6)
Characteristic polynomial for (6):
M 4872 2 — T+ u) A2 4 167*h (AT — 2u) = 0, (7)
has four solutions:
/\:j:27r\/hcr—2—uj: (2 +u)® — 4her, (8)

where signs &+ in front of both square roots have to be treated separately. The instability criterion for the cone phase
is obtained by setting the expression under the inner square root to zero and reads:

her — (1-%)2,%[0,2]. )

The latter equation means one can find a stable cone phase for all u € [0,2] and 0 < h < h°".



II. MUMAX3 SCRIPT FOR DS ANSATZ IN CONE PHASE

OutputFormat = OVF2_BINARY
Sk kkkkkkkkkkk Material constants (FeGe) kkkkkkkkkkkkkkkkkkxkkkxkxx/

Ms := 384e3; Msat = Ms // saturation magnetization [A/m]
LD := 70.0e-9 // spiral period [nm]

A := 4.0e-12 // exchange stifness [J/m]
DMI := 4.0*pix*A/LD // DMI [J/m~2]
Aex = A

Dbulk = DMI

BD := DMI * DMI / (2 * A * Ms)

/¥ *kxkxk% Easy-plane antisotropy and External magnetic field ****x/
anisU = vector (1 , 0 , 0)
Kul = -0.25 % 2 % DMI * DMI / (4 * A )
B := 0.55 * BD
B_ext = vector (0, 0, B)
// Kul and B_exzt correspond to equilibrium spiral period:
// L = 1.016232685 * LD;
Jkkkkkxxkxx Sets GridSize, CellSize and PBC **kkkkkkkkkkkkkkxkxkxx/
n := 128;
SetGridSize(n, n, n);
L := 3.0 x 1.016232685 * LD;
d := L/n;
SetCellSize(d, d, d);
EnableDemag = false
SetPBC(1, 1, 1)
openbc = false
S/ Skkkkkkkkkkkkkkkk Tnitial State  kkkkkkkkKKkKKKKKKKKKKKKKKKKKK/
// Globule ansatz in bispherical coordinates
aBP := 0.3; //distance between Bloch points
Th 0.8; //cone phase angle
for ix:=0; ix<n; ix++{

for iy:=0; iy<n; iy++{

for iz:=0; iz<n; iz++{

rx := -1.5 + 3.0*ix/n + le-6 //to ezclude division by O
ry := -1.5 + 3.0xiy/n + 1le-6 //to exzclude division by 0
rz := -1.5 + 3.0%iz/n + le-6 //to ezclude division by 0
r := sqQrt(rx*rx+ry*ry+rz*rz);

f := atan2(ry,rx)

Q := sqrt((r*r+aBP*aBP)*(r*r+aBP*aBP) - 4.0*xrz*rz*aBP*aBP);
theta := acos ((r*r-aBP*aBP)/Q);

phi = £ + 0.5*%pi - 2.0*pix*rz;

mx := sin(theta)*cos(phi)*cos(Th) - cos(theta)*sin(Th);

mz := cos(theta)*cos(Th) + sin(theta)*cos(phi)*sin(Th);

my := sin(theta)*sin(phi);

ml := mx*cos(2.0%pi*rz) - my*sin(2.0*pi*rz);

m2 := my*cos(2.0%pi*rz) + mx*sin(2.0*pix*rz);

m3 := mz;

mnew:=vector (m1, m2, m3);
m.SetCell(ix, iy, iz, mnew);

}
}
save (m)
relax ()
minimize ()
save (m)




III. MUMAX3 SCRIPT FOR DS ANSATZ IN HELICOIDAL PHASE

OutputFormat = OVF2_BINARY
Sk kkkkkkkkkkk Material constants (FeGe) kkkkkkkkkkkkkkkkkkxkkkxkxx/

Ms := 384e3; Msat = Ms // saturation magnetization [A/m]
LD := 70.0e-9 // spiral period [nm]

A := 4.0e-12 // exchange stiffness [J/m]
DMI := 4.0*pix*A/LD // DMI [J/m~2]
Aex = A

Dbulk = DMI

BD := DMI * DMI / (2 * A * Ms)

/¥ *kxkxk% Easy-plane antisotropy and External magnetic field ****x/
anisU = vector (1 , 0 , 0)
Kul = -0.42 * 2 % DMI * DMI / (4 * A )
B := 0.57 * BD
B_ext = vector (0, 0, B)
// Kul and B_exzt correspond to equilibrium spiral period:
// L = 1.371152 % LD;
Jkkkkkxxkxx Sets GridSize, CellSize and PBC **kkkkkkkkkkkkkkxkxkxx/
n := 128;
SetGridSize(n, n, n);
L := 3.0 * 1.371152 * LD;
d := L/n;
SetCellSize(d, d, d);
EnableDemag = false
SetPBC(1, 1, 1)
openbc = false
S/ Skkkkkkkkkkkkkkkk Tnitial State  kkkkkkkkKKkKKKKKKKKKKKKKKKKKK/
// Globule ansatz in bispherical coordinates
aBP := 0.4; //distance between Bloch points
for ix:=0; ix<mn; ix++{

for iy:=0; iy<n; iy++{

for iz:=0; iz<n; iz++{

rx := -1.5 + 3.0%ix/n + le-6 //to ezclude division by 0
ry := -1.5 + 3.0xiy/n + 1le-6 //to ezclude division by 0
rz := -1.5 + 3.0%iz/n + le-6 //to exzclude division by 0
r := sqrt(rx*rx+ry*ry+rz*rz);

f := -atan2(ry,rz)

Q := sqrt((r*r+aBP*aBP)*(r*r+aBP*aBP) - 4.0*rx*rx*aBP*aBP);
theta := acos((r*r-aBP*aBP)/Q);

phi = £ + 0.5%pi;

mx := sin(theta)*cos(phi);

my := sin(theta)*sin(phi);

mz := cos(theta);

ml := mx

m2 := -my*cos (2*pi*rx)+mz*sin (2*xpi*rx)

m3 := -mz*cos (2*pi*rx)-my*sin (2*xpi*rx)

mnew:=vector (ml, m2, m3);
m.SetCell(ix, iy, iz, mnew);

}
}
}
JHERKKKKAKAK A KA AN RUNNING MINTMEZATTON Kok ook ook ok ok K KKK KKK KK KKK A KK )
save (m)
relax ()

minimize ()
save (m)




IV. DETAILS OF THE REGULARIZED GNEB METHOD

Let us denote the set of images (transient states) along the path as M = {Mz,Z € [1,N]}, where Mz ={v; 7 |i €
[1, N]} represents the Z-th of A/ images. Each image contains N four-dimensional vectors v, which define the state.
We define the distance between two images, Z and 7, as the Euclidean distance:

2
(VL —V7.i5)" (10)
1

4
PL,7 =

i=13j
In practice, we need to know the distance p between neighboring images only, i.e., 7 =Z —1or J =Z+ 1. All
intermediate images, 1 < Z < N, are movable and must be optimized using the algorithm described below. Meanwhile,
the first Z = 1 and last Z = A images are stationary states corresponding to the local minima of the Hamiltonian.
For further convenience, we define the following projection operator:

P(a,b) =b — (a-b)a, (11)

which subtracts from a vector b its projection onto a vector a.

Each image (state) Z is characterized by the energy, ez, that for the regularized micromagnetic Hamiltonian is
calculated using Egs. (1) and (5) in the main text. After calculating the energies, one can determine the tangent
vectors:

Vrtl,: —VIi, €ez—1 < ez < ezqi,

Vry1,i —Vri+ C(VI,i - Vz—u), €141 > €11, max (|lezy1 — ez, lez—1 — 61|)’

c(Vzy1,; — Vzi) F VI —Vio1,, €141 < €1-1,

T%,i ) Vzi—VI_14, €T-1 > €1 > €141, _ min (lez41 — ezl, |ez—1 — ez|) (12)

which must then be projected and normalized:

Tz =P (v, T1,), Tr:= TI,i/ Z (Tz,) (13)

The spring force, which ensures the equidistant distribution of images along the path, is given by:

fr,i=k(pz41.2 — p1,2-1) TL4) (14)

where k is the spring stiffness constant. The total force acting on the image Z also includes components arising from
the Hamiltonian, which have to be projected out into the tangent vectors:

9z,i = P (1, Bz.i) , (15)
where B1; = fML ;j; is the effective field vector. Thus, the total force in the RGNEB method is written as
Fr,i=P Wz, fri+91,)- (16)
In the case of endpoints (Z = 1 and Z = N), the force (16) includes the effective field only:
Fri="P vz, B:)- (17)

In both formulas, Egs. (16), (17), the additional projection is used due to the convenience, as at the equilibrium points
one has vz ; || Bz, or equivalently a zero force, |Fz ;| = 0.

The primary goal of the RGNEB is to minimize all forces, achieved using the algorithm and convergence criteria
described in the next section.

V. VELOCITY PROJECTION OPTIMIZATION

Denoting the set of all forces F = {Fz,Z € [1,N]} where Fr = {F; z,i € [1, N|}, the velocity projection optimiza-
tion (VPO) represents the descent method, M — M+ wF, with an adaptive change of the weight parameter, w. The
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FIG. 1. (a) The same as Fig. 5 in the main text but for dipole string at external field of 150 mT. The exception is the thinnest

plate of 80 nm, where the dipole string collapses at 150 mT. In this case, the Lorentz TEM images and phase shift images were
calculated at 140 mT.

convergence criterion for the method is defined simply as:

(.7-'1,1')2 <€, (18)
1

1
7= Nov—a\ 2

N—-1 N
—92 =

N

meaning that the average force is less than a given small e. The VPO algorithm is given as follows:

INPUT: magnetization array MO; tolerance tol; step dt; mass m;
maximal number of steps MaxIter;

OUTPUT: magnetization array Mi;

Step 1: Set velocity array to zero: V=0
Step for i = 1,2,...,MaxIter do Step 3.
Step 3: Calculate forces, F, according to Eq.(22) and Set ff = Dot (F,F)
IF sqrt(ff)/size(MO) < tol
OQUTPUT MO and STOP
ELSE do Steps 4-8
Step 4: Set vf = Dot (V+Fxdt/2m,F)

N

IF vf <= 0
Set V =0
ELSE
Set V = Fxvf/ff
Step 5: Obtain the descent direction: D = V + F*xdt/2m
Step 6: Perform the descent step: M1 = MO + dt*D
Step 7: Set velocity projected on Mi: V = D*Dot(MO,M1)-MO*Dot (M1,D)
Step 8: Set magnetization: MO = M1 and do Step 3
Step 9: PRINT(ERROR: The maximal number of iterations was exceeded!)

OUTPUT MO
Step 10:STOP.

In the above listing, we optimize the movable images only because the endpoint images are the local minimum states
or have to be separately optimized according to any available minimization procedure. To minimize the endpoints
with the VPO method in parallel to the RGNEB calculations, one has to account for possible different values for the
weight parameter w for both subroutines.
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