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We report the discovery of scaling in the mesoscale magnetic microstructure of bulk ferromagnets. Supported
by analytical micromagnetic theory, we introduce the field-dependent scaling length I-(H), which describes
the characteristic long-wavelength magnetization fluctuations that are caused by microstructural defects by
means of magnetoelastic and magnetocrystalline anisotropy. The scaling length /¢ is identified to consist
of the micromagnetic exchange length of the field /y, which depends on the magnetic interactions, and a
field-independent contribution that reflects the properties of the magnetic anisotropy field and the magnetostatic
fluctuations. The latter finding is rooted in the convolution relationship between the grain microstructure and
micromagnetic response functions. We validated the scaling property by analyzing experimental data for the
magnetic neutron scattering cross section. When plotted as a function of the dimensionless scaled scattering
vector q(H) = qlc(H ), the field-dependent amplitude-scaled neutron data of nanocrystalline Co and a Nd-Fe-B-
based nanocomposite collapse onto a single master curve, demonstrating universal behavior. The scaling length
lc provides a framework for analyzing the field-dependent neutron scattering cross section, highlighting the

existence of critical length scales that govern the mesoscale microstructure of magnetic materials.

DOLI: 10.1103/9gb1-r9bs

I. INTRODUCTION

Scaling is a fundamental concept in physics (and in the
natural sciences in general) that reveals how physical laws and
phenomena change with size, time, energy, or other relevant
variables [1,2]. It may serve as a bridge between different
regimes of a system, offering deep insights into the underlying
principles that govern diverse physical processes. Well-known
examples from condensed-matter physics are second-order
phase transitions, where scaling laws encapsulate the uni-
versal behavior of physical quantities such as the magnetic
susceptibility or the correlation length [3,4], or the dynamical
scaling of the phase separation process in binary metal alloys
[5]. Other more recent examples for the relevance of scaling
include the finding of a scaling law for the intrinsic fracture
energy of stretchable networks [6], the power-law scaling in
neuronal networks on the example of the fruit fly brain [7], a
scaling law for how the timescale of solidification under ho-
mogeneous nucleation depends upon the compression rate in
both metallic and molecular systems [8], or the Kibble-Zurek
scaling of the defect density as a function of the quench time
(and deviations thereof) when crossing a continuous phase
transition [9].

Here, we report the discovery of a scaling law for the
mesoscale magnetic microstructure of bulk ferromagnets.
Specifically, we show both theoretically and experimentally
that the perturbing effect of microstructural defects on the
surrounding spin structure can be described by a unique field-
dependent scaling variable Ic(H). This length scale, which
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naturally emerges in the micromagnetic continuum descrip-
tion of the magnetic microstructure, characterizes the size
(wavelength) of nonuniformly magnetized regions around de-
fects (compare Fig. 1). It has its origin in the complicated
convolution relationship between the defect microstructure
and the magnetization distribution.

To experimentally demonstrate our finding, we use the
scaling variable to describe the field-dependent magnetic neu-
tron scattering structure factor of several magnetic materials.
Small-angle neutron scattering (SANS) emerges here as a key
experimental technique, offering insights into the magnetic
microstructure within a range of ~1-1000 nm [11]. When the
momentum transfer or scattering vector q is scaled by Ic(H),
according to

q(H) = qlc(H), (1)

the magnetic SANS cross sections measured at different ap-
plied magnetic fields collapse onto a single master curve.

We start the discussion by recalling the basic ideas behind
the theory of magnetic SANS. The theoretical concepts will
then be benchmarked by comparison to experimental neutron
data on nanocrystalline Co and a Nd-Fe-B-based nanocom-
posite. We refer to the Supplemental Material [12] for further
examples of experimental magnetic SANS data that demon-
strate scaling behavior (see also Refs. [13,14] therein).

II. MICROMAGNETIC SANS THEORY

The theory of magnetic SANS (see, e.g., Refs. [15-17]) is
based on the following expression for the magnetic Gibbs free
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FIG. 1. Illustration of the magnetic scaling concept. (a) The
length scale Ic(H ) is a measure for the size of inhomogeneously mag-
netized regions around microstructural defects (L) (after Ref. [10]).
The latter are characterized by a magnetic anisotropy field H, (r) that
is at the origin of the spin perturbation, e.g., due to magnetocrys-
talline or magnetoelastic anisotropy. M, denotes the component of
the local magnetization vector M(r) that is perpendicular to the
applied magnetic field H. The ferromagnetic exchange interaction
transmits the perturbation from the defect core into the surrounding
crystal lattice. At a given H, [c may be seen as the resolution limit
of M(r). (b) and (c) (not to scale) schematically display the perpen-
dicular magnetization distribution around defects in the high-field,
small-amplitude limit (b), when Ic is small, and in the low-field,
large-amplitude case (c) (large Ic). In (b), the magnetization can
follow the local direction of the anisotropy field characterizing the
defect, whereas in (c) the defect group appears as a single su-
perdefect; in other words, when decreasing the field [(b)—(c)], the
amplitude (M ) and the characteristic wavelength (Ic) of the magne-
tization “ripple” increases.

energy [18],

G= /// dv(i[(VM Y+ (VM) + (VM.)*]
- 2 X y Z
Vv M()
tw, — poM-H — %MOM : Hd>, (2)

where M(r) = {M,(r), M,(r), M.(r)} is the magnetization
vector field with My = |M| being the saturation magnetiza-
tion. The first term in Eq. (2) describes the stiffness of the spin
system due to symmetric exchange with exchange constant
A, V ={0/0x,0/dy, 9/9z} is the del operator, the second
term w, = w,[M(r)] denotes the magnetic anisotropy energy
density, H = {0, 0, H} is the externally applied magnetic field
(assumed to be constant here), and Hqy = Hy[r, M(r)] rep-
resents the magnetostatic field created by the magnetization
distribution (g = 4w x 1077 Tm/A).

As detailed, e.g., in Refs. [15,16], the linearization of
the Euler-Lagrange differential equations that result from
the variation of the functional Eq. (2) yields the following

closed-form expressions for the transversal magnetization
Fourier components M,(q) and M,(q),
i = p(pr[l + qu}z] —M:4.q; — prququy) 3)
X — A A )
1+ p(33 +32)
i PUs[+ pai] — Meg,d: — Hypdidy) @
’ 1+ p(@2 +4?) ’
where q = {qx, ¢y, ¢;}/q denotes the unit wave vector (later
on identified as the momentum-transfer vector),

(g H) = —0 )
pq, 1) = ——=
Herr (g, H)
is a dimensionless function of ¢ = |q| and H = |H|, and
2A
Her(q. H) = H(1 + [3¢%) = H + ¢ ©
oMo

is the effective magnetic field, which contains the micromag-
netic exchange length of the field

2A
Iy(H) = . )
\ mwoMoH

As we will see below, the field-dependent length scale /y;(H)
forms an integral part of the scaling length /c(H) intro-
duced by Eq. (1). Hp (q) and Hp,(q) represent the Cartesian
Fourier components of the magnetic anisotropy field H,(r);
these terms increase the magnitudes of I\ZC,_V and tend to
produce spin disorder in the system. Likewise, A7lz(q) is the
Fourier transform of the spatial saturation magnetization pro-
file M(r) of the sample. Note that the volume average of
M(r) equals the macroscopic saturation magnetization My =
(M(r)), which can be measured with a magnetometer. Note
also the symmetry of Eqgs. (3) and (4) under the exchange of
the x and y coordinates.

The effective magnetic field Her [Eq. (6)] consists of a
contribution due to the applied field H and of the exchange
field 2Aq2 /(;oMyp). An increase of H increases H.g only at
the smallest g values, whereas Hg at the larger g is always
very large (~10-100 T) and independent of H. The latter
statement may be seen as a manifestation of the fact that
exchange forces tend to dominate on small length scales [19].
Since Hesr appears predominantly in the denominators of the
expressions for M, and M, [Egs. (3) and (4)], its role is to
suppress the high-g Fourier components of the magnetiza-
tion, which correspond to sharp fluctuations in real space.
However, long-range magnetization fluctuations, at small g,
are effectively suppressed when H is increased (compare the
experimental magnetic SANS data in Fig. 2 below).

With a view towards the analysis of experimental neutron
data, where most often the applied magnetic field H is per-
pendicular to the incoming neutron beam, we focus on the
following purely magnetic SANS cross section [11],

d EM 87T3 ~ ~
— = 7bﬁ[|MX|2 + |M,|* cos® 6
—(M,M + M;M.)sin 6 cos 6], ®)
where V is the scattering volume, by = 2.91 x 108 A~ 1m™!
represents the atomic magnetic scattering length in
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FIG. 2. Scaling analysis of experimental magnetic neutron data. (a) The field-dependent = Iy o' (g, H) of nanocrystalline Co (log-log scale,
field values from top to bottom are specified in the 1nset) (data taken from Ref. [20]). (b) Data from (a) plotted as a function of ¢ = glc with f =
11.8 & 1.4 nm and vertically scaled using the function EM(IC) [compare Fig. 3(b)]. (c) dZm (q, H) of the nanocomposite Nd,Fe ;B /FegB (log-

log scale, field values from top to bottom are specified in the inset) (data taken from Ref. [21]). (d) Scaled magnetic SANS cross section =M dQ

Y (q)

using f = 24.5 £ 0.9 nm and vertically scaled [Fig. 3(b)]. The data in (a) and (c) were normalized by the intensity value at the smallest field and
q value, respectively, in this way making the d y;/d Q2 data dimensionless. Dashed lines in (b) and (d): Asymptotic power laws d Xy /d 2 o< ="

(see insets).

small-angle approximation, 1\~/I(q) = {Mx(q),ﬁy(q),ﬂz(q)}
is the Fourier transform of M(r), “*” refers to the complex
conjugated quantity, and q = q/¢ = {0, sin0, cos6} is the
unit scattering vector with 6 the angle included between H
and . As shown in Ref. [15], near magnetic saturation, the
azimuthally -averaged (over the detector plane) magnetic
SANS cross section d Xy;/dS2 can be expressed in compact
form as [22]

dXy

—(61, H) = Su(q)Ru(q, H) + Sm(@)Rm(g, H),  (9)

where

su= DA, and Sy = S—b 202 (10)
denote, respectively, the anisotropy-field and magnetostatic
scattering functions. Sy(g) and Sym(g)—both field indepen-
dent in the approach-to-saturation regime—contain informa-
tion on the strength and spatial structure of the magnetic
anisotropy field and magnetostatlc field; e.g., in a magnetic
nanocomposite, Sy o< [M,|> o« (AM)?, where AM denotes
the jump of the magnetization magnitude at internal particle-
matrix interfaces.

The dimensionless so-called micromagnetic response func-

tions Ry(g, H) and Ry (g, H) are expressed as [15]

2 1 JT¥p—1
&=ﬂ@+——0 and Ry=Y—1P=1
4 JI+p 2
(1)

The magnetic neutron scattering due to transversal spin com-
ponents, with related Fourier amplitudes M (q) and M,(q), is
contained in d Xy /d <2, which decomposes into a term SyRy

due to perturbing magnetic anisotropy fields and a part SpRm
related to magnetostatic fields.

III. ANALYSIS OF EXPERIMENTAL DATA

The quantity dXy/d2 [Eq. (9)] represents, in the satu-
ration regime, the g- and H-dependent unpolarized magnetic
SANS cross section of a statistically isotropic polycrystalline
ferromagnet. In the following, we will show that, when the
scattering vector q is scaled by a suitably chosen length scale
lc [Eq. (1)], the d Xy /d 2 that are measured at a series of fields
collapse onto a single master curve described by d >y /d2 =
Em(lc)d Zm/dS2(q), where the dimensionless vertical (am-
plitude) scaling is described by the quantity Xy;. For use in
q = qlc, we make the following ansatz for the field-dependent
correlation length,

Ic(H) = f(én, &M, o) + ln(H),

where the field-independent quantity f characterizes the
microstructure of the magnetic anisotropy (“H”) and magne-
tostatic (“M”) fields, and the field-dependent contribution Iy
[Eq. (7)] depends on the magnetic interactions (exchange and
magnetostatics). The parameters &y, &y, o determining f are
the correlation lengths of the magnetic anisotropy (§y) and
magnetostatic (&) fields and the relative strength o of the
two contributions; for example, &g = &\ for a dilute collection
of uniformly magnetized single-crystalline nanoparticles that
are embedded in a homogeneous magnetic matrix of different
magnetization.

The above ansatz for the scaling length [Eq. (12)] can be
physically motivated by inspecting Egs. (3) and (4) for g, = 0
(corresponding to the scattering geometry in which the data
in Fig. 2 were taken) and without dipolar interaction. In this

12)
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situation we find [11]

i, = pif, = Mot (13)
X_p pX_Hl—I—lI%qu’
~ M, H,
=2 (14)
H 1+ 154*
Equations (13) and (14) imply that the (perpendicular) mag-
netic microstructure in real space, M (r), corresponds (at not
too small distances) to the convolution (*, not to be con-
fused with the complex conjugated) of the anisotropy field
microstructure, Hy(r), with an exponential response function
that decays with a characteristic length scale Iy, i.e.,

M, (r) = Hy(r) * exp(—r /). (15)

This consideration then motivates the above choice for the
scaling length I- [Eq. (12)] to consist of a field-dependent
term g oc 1/ H, which takes the magnetic interactions
(A, M) into account, and a field-independent contribution f,
which describes the size, shape, and magnitude (o, &g, &m)
of the defect that causes the spin perturbation [compare also
to Fig. 1(a)]. Due to the complexity (nonlinearity) of the
magnetic microstructure more complex relationships than the
assumed linear dependency Ic o Iy are of course feasible.

Figure 2 displays the results of a scaling analysis of
experimental neutron data. For this we have used unpo-
larized magnetic SANS data of nanocrystalline Co [20]
and a Nd-Fe-B alloy [21]. For the computation of the
exchange length /gy in q = g(f + ly), we have used the ex-
perimental values for the exchange constants and saturation
magnetizations [20,21]: A =31 pJ/m (Co), A = 12.5 pJ/m
(Nd,Fe 4B /FesB), uoMy = 1.76 T (Co), and oMy = 1.60 T
(Nd,Fe 4B /Fe3B); see also Refs. [23,24] for further details on
these samples (magnetization, x-ray diffraction, and electron
microscopy). Therefore, the value of Iy is fixed for a given
value of the field. For the function f(&y, &M, @) we have
made the simplest possible choice, i.e., we set f equal to a
constant—the defect size. This quantity was determined by a
least-squares analysis, i.e., for all the experimental %(q, H)
data in Figs. 2(a) and 2(c) the parameter f was refined in q =
q(f + Iy) to minimize the mean-square deviation between all
the data points (one free f parameter per neutron data set).
While the horizontal scaling is done via f, the vertical scaling
is performed using the function Xy (Ic).

The (normalized) experimental magnetic SANS cross sec-
tions [Figs. 2(a) and 2(c)] exhibit a strong field dependence, in
particular at the smallest momentum transfers g. As discussed
earlier, this is related to the fact that long-range magnetization
fluctuations, at small g, are effectively suppressed when H
is increased. Closer inspection of the field-dependent data
reveals the existence of a field-dependent length scale that
decreases with increasing field. This becomes evident from
the observation that the point with the largest curvature in
dX\/dS2 evolves to a larger ¢ when H increases. Scaling of
the field-dependent SANS data results in a collapse of all data
onto a single master curve [Figs. 2(b) and 2(d)].

Moreover, we see in Figs. 2(b) and 2(d) that the mag-
netic structure factors are described by asymptotic power laws
d¥\/d2 oc 7" that are much larger than the Porod sharp-
interface exponent of n = 4. This is in perfect agreement with

) = nc Co (@) = nc Co (b)
10°F\ o Nd,Fe;4B/FesB ] 103l \ * Nd:FeysB/FesB |
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FIG. 3. (a) Field dependence of the scaling length Ic(H) for
nanocrystalline Co and Nd,Fe 4B /Fe;B (log-log scale). Solid lines:
Ic(H) = f + lg(H). The dashed lines indicate the respective de-
fect size Ic(H — o0o) = f. (b) Vertical scaling factor iM(lC) and
power-law fit (solid lines) to EJM(IC) o Ic™ (semilog scale), where
m = 5.7 £ 0.1 for nanocrystalline Co.

the notion of spin-misalignment scattering, encapsulated in
the magnetic SANS theory [25]. However, we emphasize that
power-law exponents obtained from unscaled experimental
data are usually dependent on the applied magnetic field (see,
e.g., Fig. 2 in Ref. [21]), while exponents that are deduced
from scaled neutron data are field independent, which is due
to the scaling property.

The collapse of the magnetic SANS cross sections onto a
master curve, when scaled by the length /c(H ), points toward
a deeper physical meaning of /c(H). This behavior suggests
that the response of the magnetization to microstructural de-
fects follows the same overall pattern as the magnetic field
varies. This pattern is independent of the change in scale
and occurs despite the complex spin configuration. The fact
that the same functional form describes the spin-misalignment
cross section over a wide range of fields suggests that the mag-
netic microstructure behaves in a consistent way, as if it were
near a “fixed point.” In this regime, the effects of magnetic
interactions and structural disorder can be combined into a
single parameter, /c, which suggests a link to key principles in
statistical physics, specifically to the ideas of universality and
scaling.

The Ic(H) data in Fig. 3(a) show a decrease of the charac-
teristic spin-misalignment fluctuations with increasing field.
The limiting values at large fields Ic(H — oo) = f (dashed
lines) agree very well with previously determined structural
features in the samples, i.e., an average grain size of ~10 nm
for nanocrystalline Co [23] and particle sizes for the two
phases in Nd,Fe4B/Fe; between about 20 and 30 nm [24].
These results suggest the interpretation of the limiting length
scale f as the average size of the defect that causes the spin
disorder and the ensuing neutron scattering signal (compare
to Fig. 1). In experimental situations, the exchange constant A
may be determined from the field dependence of Ic.

The observation that the spin-misalignment correlations
decay with increasing field [Fig. 3(a)], which are here ob-
tained by the scaling procedure, is qualitatively in agreement
with the results in Refs. [20,21], where Ic has been estimated
from the decay of the spin-misalignment correlation function,
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obtained by means of Fourier transformation of the scatter-
ing data. It is in support of our theoretical magnetic SANS
framework that the values obtained by the two approaches are
similar in magnitude and show a similar decay with field. As
discussed above, this consistency provides strong support for
the physical relevance of /¢ as a genuine characteristic of the
system. _

The vertical scale factor Xy as a function of /- is shown
in Fig. 3(b). For nanocrystalline Co, the amplitude can be
well described by a power law Xy(lc) oc Ic™ with an ex-
ponent of m = 5.7. For Nd,Fe;4B/Fe;B, the agreement is
less quantitative and no exponent can be reliably determined.
This observation might be related to the fact that the small-
misalignment approximation (that underlies our analytical
SANS theory) becomes less reliable at small fields (large
lc). Here, numerical micromagnetic computations, which are
able to take into account the full nonlinearity of Brown’s
equations at low fields, might provide an extension of the
mesoscale scaling concept in magnetic neutron scattering.

Overall, the picture of the magnetic microstructure that
emerges is the following: The defects (grains) are locally
decorated by nanoscale spin disorder, which is generated
by spatial variations in the direction and magnitude of the
magnetic anisotropy field and by spatial variations in the
magnetic materials parameters (e.g., exchange constant, sat-
uration magnetization). At large fields, the scaling length /¢
has a magnitude that is close to the defect size, while de-
creasing the field results in the buildup of long-wavelengths
magnetization fluctuations. These are particularly large for the
case of nanocrystalline Co (Ic ~ 100 nm at 5 mT), suggesting
that many grains in an exchange-coupled volume act as a
single superdefect. The whole process is governed by a single
field-dependent length scale Ic. The observed scaling emerges
from the fact that the magnetization’s response to lattice per-
turbations remains qualitatively similar over a wide range
of applied magnetic fields. The scaling relation proposed in
Eq. (1) captures this behavior by mapping the magnetization
profiles onto each other in Fourier space.

IV. CONCLUSION

Our analytical and experimental investigations of the mag-
netic neutron scattering cross section provide strong evidence

for scaling behavior in the mesoscopic magnetic microstruc-
ture of bulk ferromagnets. This scaling arises from the
convolution relationship between the grain microstructure and
micromagnetic response functions, which govern the magne-
tization distribution. The characteristic scaling length consists
of a field-independent contribution, reflecting the intrinsic
properties of the defect responsible for spin perturbation, and
a field-dependent micromagnetic exchange length that gov-
erns the propagation of the perturbation into the surrounding
microstructure. We experimentally confirm the presence of
this scaling behavior in several distinct magnetic systems,
including a single-phase elemental nanocrystalline ferromag-
net, two-phase hard/soft magnetic nanocomposites, and a
mechanically deformed 3d transition metal. Our results es-
tablish a conceptual framework for analyzing field-dependent
small-angle neutron scattering data, enabling a more precise
interpretation of experimental results. Notably, the scal-
ing length can be directly estimated from structural defect
characteristics—accessible via electron microscopy or x-ray
diffraction—and known magnetic material parameters. The
defects arise due to the growth of the material and their density
can be tuned, e.g., by mechanical deformation or annealing.
Furthermore, for previously uncharacterized materials, this
approach provides a method to determine the exchange con-
stant from the decay of the scaling length. Additional neutron
scattering experiments are needed to explore the generality
of these findings across an even broader range of magnetic
materials.
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